ﬁ;!% 774 _gn E Hli :F; r._ My

C++EFRITRES%H

(SR3hR)
BJARNE STROUSTRUP

) 9
=

Programming

Principles,and Practice Using C++

(%) Bjarne Stroustrup 2

1 A 1 3
China Machine Press

C++EFRItRESXH)

Programming Principles and Practice Using C++

C++ 2 A Bjarne Stroustruplf)Ig#i 1§

o HRE EFRIY R F R F T ES

FTRRRA THITRGFLERH#ITHMATEHENTE, FHREFNBLEREFSREERE
AERF.

IEEBSHEERAANER

SEREMNCHEMIEL, FENEFREBMELERNNMBELNRN, ZESHRREEH. EMH.
SHPTA MR TR ER

s AU CHEEEHE

FE—FENETEANEFZTAZE (BFEENREFGHIZEAZFZD | 5—FEE
WREFZ LR ER R IZHEFZIHES —CHHT TRIFNNE. ZBEAFERTFHRNTENR
RCHEFZITEAR, HNMETABRXFNAERCHREERBLUEFZTHAE.

ERTNEEUREAFEFIFHAOIRGA

FHEERAPLENRREARFHARELR, MECLHBIT1000ZXF—ELFELAL. &
o, MFELARMEERFERE, BENROANEFGTRHNALBHEESHEHEDE, B
SR EHHSEHES.

IRt IAR NS

FHE-MHERTZRNBTEFEFSTHEA, SEERES. HHNEEHEA. E5HH
WEARERE. XEATBRNARERAERMA. fill. HHEURHEERETSNENERF. £HE
ZEHANABT LELEMOAT GOXAFLEAL) | FRETARNSERN.

AHMEE (http://www.stroustrup.com/Programming/) 124t T E BB HRE, SIFLHIER.
PPT, #hiR%.

E=TopIN

Bjarne Stroustrup ZEIHAFITEHYAEE L, CHHEEMRITENSIN | L
EHE, R (CHEFZITES) (EEMMILHEESHEHR) —BaES. t
NELBEMRIAHTENBFEHREE, 1993F, HFAECHIUSHEARM, Bame
#%18 TACMiyGrace Murray Hopper k2 # M AACMBRt, ZEHNFRBZH, g%
ATRTRREBRETIERE, RSO C+HHREZERSHAIBAZ—,

A
had
For sale and distribution in the People's Republic of China H www.pearsonhighered.com
exclusively (except Taiwan, Hong Kong SAR and Macau SAR).

RFPEAREMEREN (FEFTESTE, RIHITER

LRES.: T8 BFigt/ C+
MHEETHER) HERT. mmmﬁ#qne&mﬁ
1ML (010) 88379604 AL SN
Wy (010) 68995259, 68995264 - SUBW L

EE(E: hzjsj@hzbook.com =TS

87111"282488
Ef: 89.0057¢

R £ 9 $5: www.china-pub.com)
BIMRSEL - 4% 5 A

fas

ik

'HZ BOOKS

—i—ﬂﬁﬁ

 C+ Rl R e B AT X 3K

u‘omqmq:q:_:m

Principles and Practice Using C++

) Bjarne Stroustrup AU

R R

Ru,wlwu_

: ﬁ.J Vachine

HEH

-

C++EFRITRES

English reprint edition copyright © 2010 by Pearson Education Asia
Limited and China Machine Press.

Original English language title: Programming: Principles and Practice Using
C++ (ISBN 978-0-321-54372-1) by Bjarne Stroustrup, Copyright © 2009 Pearson
Education, Inc.

All rights reserved.

Published by arrangement with the original publisher, Pearson Education,
Inc., publishing as Addison-Wesley.

For sale and distribution in the People’s Republic of China exclusively
(except Taiwan, Hong Kong SAR and Macau SAR).

A5 3L 22 EN i i1 Pearson Education Asia Ltd. 34 HLAR Tl 4 AR #H xR
ik, REBHREBEFT, AEUMEMLTREHISRDPEEBRNA,

(XRT e NRICFIEDEA (AT E A, BRI 7B e [
BiEHIX) #HERTT.

A5 H E A Pearson Education (¥AZH HMER) $OLH hin%,
ErEEAHHE.

BEURE, BBULER.
FHEEME ALRTRARITESR

AHERNEIZS: EF: 01-2009-4962
EHERSE (CIP) #iF

CHEFIRIHFE 5L (3E3hR) / () ks Hife&¥ (Stroustrup, B.)
. —bxt: HLM Tl HiARH:, 2009.10

(23R A5)

453X : Programming: Principles and Practice Using C++

ISBN 978-7-111-28248-8
[.C- O.# N CEZF-BFEI-¥L V. TP3I12
Hh L R A P R CIPRAE i (2009) 551612655

LB Tolb iR Glesct sk E § 5o k17229 MSEE4RS 100037)
TG BRiRE

bR IREN 554 PR 2 BIEMRI

20094£10 A 45 1RR %5 1R ENRY

150mm x 214mm -« 39.625E3k

FriEPE . ISBN 978-7-111-28248-8

EHr: 89.007¢

JUaAS, mAEm. Rit. i, Btk TiHiER
i HHhek. (010) 68326294

&W%%%g

XERFAUME, REHEKOFHEERMIZES RS ARE, #
P E K AE B ARPHER A GUSR AR T 20 RIS, thiERX R
%49, EEXEERBBERRBRIATZEREAREN. HGNE, &£
eIt RS, EEMN LR 58E TR BT S, TR
FRR T 2 R I R B AR B I AT £, BT e AR R
ZHUPHEEE, TSOUERITHRRER, SERTERNRE, BHE
EEARE, XAAFEENE, B EIFASEE AR mHERE .

AR, ELREBMAKRHAMEZD T, RENTHFEH™ LR R
e, HEWAFHFRBEEY., X EYLEE F 0 RF AR
RO, MK mMEPLEMMEERERTRE LEEERERE,
ERERFEEEAREMARENIART, XEFREERELITTE
LBt ZERRELTERREMERIZSBBEMDATFLEBEEZ
kb, Bk, SlgE—#ESMUF RN EM B R E T REILE T F L
Mk RERBRRMHEDNER, Wi SHttFER. BixEERNTHR—
WA MHZE.

HLAK Tl Rt e E o R R EIRE “HREAEFTRS™. B
19984 FF4f, MeF oy thuhfF LVE | fRUBE Tk . BiFESMETE Bt
F. B 2SS, Fi15Pearson, McGraw-Hill, Elsevier,
MIT, John Wiley & Sons, CengageZ it 5735 4 HAR A FIESL T REFHY
AEXRFR, MBIELA B AR B L% H Andrew S. Tanenbaum,
Bjarne Stroustrup, Brain W. Kernighan, Dennis Ritchie, Jim Gray,
Afred V. Aho, John E. Hopcroft, Jeffrey D. Ullman, Abraham
Silberschatz, William Stallings, Donald E. Knuth, John L. Hennessy,
Larry L. Peterson& KUifi & KM —# L HIES, UL “UHREILEHFENS
AEBHRER, HiREES]. HRAEREE., KEASEEMHE, HiEd
BT X EMNBH AL A

iv

‘UEILBHEAS” WHRTESS TERNMEENR 2D,
EARER ARG T EREBIHE S, EAFS EHARE T B0
FROLE: mEREBOES LAY SEREREPENEE, AL
LTRAKBORIERERF. €4, “HEIEENE B8R TIE
FEA MR, XLEREAREPRLTRFVOM, HlFZamix
FAERBMHMSEZBE, HTER “SMFRBE" EHBKES
R R R £ L HEDUE B R R .

BEHIES . BB . —KNEE. mEROEK. KA
B, XERFERMVEBSA TREMRIE. METHELRS5H
RE %P IEMAE EEMEMSCEMEIENL, BEFFAEIN
HENEM TR ASES A - B, RIMNMERER
HERE, MRBABLERBITLAREX LR BIRMEZEHRY, &
B oy AWM U AN X AT TAESR B TR E, BATHY
RAEFZHENT

£ZMYL. www.hzbook.com
B FHE{4. hzjsj@hzbook.com
BXR#IE. (010) 88379604 HZ Books |
BEREMU. X TEREETT EdHLS £E4F
HRBI4%A5 . 100037

Preface

“Damn the torpedoes!
Full speed ahead.”

—Admiral Farragut

Programming is the art of expressing solutions to problems so that a computer
can execute those solutions. Much of the effort in programming is spent finding
and refining solutions. Often, a problem is only fully understood through the
process of programming a solution for it.

This book is for someone who has never programmed before but is willing
to work hard to learn. It helps you understand the principles and acquire the
practical skills of programming using the C++ programming language. My aim
is for you to gain sufficient knowledge and experience to perform simple useful
programming tasks using the best up-to-date techniques. How long will that
take? As part of a first-year university course, you can work through this book in
a semester (assuming that you have a workload of four courses of average diffi-
culty). If you work by yourself, don’t expect to spend less time than that (maybe
15 hours a week for 14 weeks).

Three months may seem a long time, but there’s a lot to learn and you'll be
writing your first simple programs after about an hour. Also, all learning is grad-
ual: each chapter introduces new useful concepts and illustrates thy ith exam-
ples inspired by real-world uses. Your ability to express ideas in code ~ getting a
computer to do what you want it to do — gradually and steadil €s as you
go along. I never say, “Learn a month’s worth of theory and then gee if you can
use it.” ‘N

\

vi Preface

Why would you want to program? Our civilization runs on software. With-
out understanding software you are reduced to believing in “magic” and will be

from personal computer applications with GUIs
, through engineering calculations an sys-
(such as digital cameras, cars, and cell phones), to text
manipulation applications as found ifi many humanities and business applica-
tions. Like mathematics, programming — when done well — is a valuable intellec-
tual exercise that sharpens our ability to think. However, thanks to feedback
from the computer, programming is more concrete than most forms of math, and
therefore accessible to more people. It is a way to reach out and change the world
— ideally for the better. Finally, programming can be great fun.

Why C++? You can't learn to program without a programming language,
and C++ directly supports the key concepts and techniques used in real-world
software. C++ is one of the most widely used programming languages, found in
an unsurpassed range of application areas. You find C++ applications every-
where from the bottom of the oceans to the surface of Mars. C++ is precisely
and comprehensively defined by a nonproprietary international standard. Qual-
ity and/or free implementations are available on every kind of computer. Most of
the programming concepts that you will learn using C++ can be used directly in
other languages, such as C, C#, Fortran, and Java. Finally, I simply like C++ as
a language for writing elegant and efficient code.

This is not the easiest book on beginning programming; it is not meant to
be. I just aim for it to be the easiest book from which you can learn the basics of
real-world programming. That’s quite an ambitious goal because much modern

relies on techniques considered advanced just a few years ago.

My fundamental assumption is that you want to write programs for the use
of others, and to do so responsibly, providing a decent level of system quality;
that is, I assume that you want to achieve a level of professionalism. Conse-
quently, I chose the topics for this book to cover what is needed to get started
with real-world programming, not just what is easy to teach and learn. If you
need a technique to get basic work done right, I describe it, demonstrate concepts
and language facilities needed to support the technique, provide exercises for it,
and expect you to work on those exercises. If you just want to understand toy
programs, you can get along with far less than I present. On the other hand, I
won't waste your time with material of marginal practical importance. If an idea
is explained here, it’s because you’ll almost certainly need it.

If your desire is to use the work of others without understanding how things
are done and without adding significantly to the code yourself, this book is not
for you. If so, please consider whether you would be better served by another
book and another language. If that is approximately your view of programming,
please also consider from where you got that view and whether it in fact is ade-
quate for your needs. People often underestimate the complexity of program-

Preface vii

ming as well as its value. I would hate for you to acquire a dislike for program-
ming because of a mismatch between what you need and the part of the software
reality I describe. There are many parts of thc “information technology” world
that do not require knowlcdge of programming. This book is aimed to serve
those who do want to write or understand TOgrams.

Because of its structure and practical aims; s book can also be used as a
second book on programming for someone who already knows a bit of C++ or
for someone who programs in another language and wants to learn C++. If you
fit into one of those categories, I refrain from guessing how long it will take you
to read this book, but I do encourage you to do many of the exercises. This will
help you to counteract the common problem of writing programs in older, famil-
iar styles rather than adopting newer techniques where these are more appropri-
ate. If you have learned C++ in one of the more traditional ways, you’ll find
something surprising and useful before you reach Chapter 7. Unless your name
is Stroustrup, what I discuss here is not “your father’s C++”

Programming is learned by writing programs. In this, programming is similar
to other endeavors with a practical component. You cannot learn to swim, to play
a musical instrument, or to drive a car just from reading a book — you must prac-
tice. Nor can you learn to program without reading and writing lots of code. This
book focuses on code examples closely tied to explanatory text and diagrams. You
need those to understand the ideals, concepts, and principles of programming and
to master the language constructs used to express them. That’s essential, but by it-
self, it will not give you the practical skills of programming. For that, you need to
do the exercises and get used to the tools for writing, compiling, and running pro-
grams. You need to make your own mistakes and learn to correct them. There is
no substitute for writing code. Besides, that’s where the fun is!

On the other hand, there is more to programming — much more — than fol-

afescand reading the manual. This book is emphatically not fo-
Of C++." Understanding the fundamental ideals, principles,
- @ essence of a good programmer. Only well-designed code
has a chance of becoming part of a correct, reliable, and maintainable system.
Also, “the fundamentals” are what last: they will still be essential after today’s
languages and tools have evolved or been replaced.

What about computer science, software engineering, information technol-
ogy, etc.? Is that all programming? Of course not! Programming is one of the
fundamental topics that underlie everything in computer-related fields, and it has
a natural place in a balanced course of computer science. I provide brief intro-
ductions to key concepts and techniques of algorithms, data structures, user in-
terfaces, data processing, and software engineering. However, this book is not a
substitute for a thorough and balanced study of those topics.

Code can be beautiful as well as useful. This book is written to help you see
that, to understand what it means for code to be beautiful, and to help you to
master the principles and acquire the practical skills to create such code. Good
luck with programming!

viii Preface

A note to students

Of the 1000+ first-year students we have taught so far using drafts of this book at
Texas A&KM University, about 60% had programmed before and about 40% had
never seen a line of code in their lives. Most succeeded, so you can do it, too.

You don’t have to read this book as part of a course. I assume that the book
will be widely used for self-study. However, whether you work your way through
ag part of a course or independently, try to work with others. Programming has
an — unfair — reputation as a lonely activity. Most people work better and learn
faster when they are part of a group with a common aim. Learning together and
discussing problems with friends is not cheating! It is the most efficient — as well
as most pleasant — way of making progress. If nothing else, working with friends
forces you to articulate your ideas, which is just about the most efficient way of
testing your understanding and making sure you remember. You don’t actually
have to personally discover the answer to every obscure language and program-
ming environment problem. However, please don’t cheat yourself by not doing
the drills and a fair number of exercises (even if no teacher forces you to do
them). Remember: programming is (among other things) a practical skill that
you need to practice to master. If you don’t write code (do several exercises for
each chapter), reading this book will be a pointless theoretical exercise.

Most students — especially thoughtful good students — face times when they
wonder whether their hard work is worthwhile. When (not if) this happens to you,
take a break, reread the preface, and look at Chapter 1 (“Computers, People, and
Programming”) and Chapter 22 (“Ideals and History”). There, I try to articulate
what I find exciting about programming and why I consider it a crucial tool for
making a positive contribution to the world. If you wonder about my teaching phi-
losophy and general approach, have a look at Chapter 0 (“Notes to the Reader”).

You might find the weight of this book worrying, but it should reassure you
that part of the reason for the heft is that I prefer to repeat an explanation or add an
example rather than have you search for the one and only explanation. The other
major part of the reason is that the second half of the book is reference material and
“additional material” presented for you to explore only if you are interested in
more information about a specific area of programming, such as embedded sys-
tems programming, text analysis, or numerical computation.

And please don’t be too impatient. Learning any major new and valuable
skill takes time and is worth it.

A note to teachers

No. This is not a traditional Computer Science 101 course. It is a book about
how to construct working software. As such, it leaves out much of what a com-
puter science student is traditionally exposed to (Turing completeness, state ma-

Preface ix

chines, discrete math, Chomsky grammars, etc.). Even hardware is ignored on
the assumption that students have used computers in various ways since kinder-
garten. This book does not even try to mention most important GS topics. It is
about programming (or more generally about how to develop software), and as
such it goes into more detail about fewer topics than many traditional courses. It
tries to do just one thing well, and computer science is not a one-course topic. If
this book/course is used as part of a computer science, computer engineering,
electrical engineering (many of our first students were EE majors), information
science, or whatever program, I expect it to be taught alongside other courses as
part of a well-rounded introduction.

Please read Chapter 0 (“Notes to the Reader”) for an explanation of my
teaching philosophy, general approach, etc. Please try to convey those ideas to
your students along the way.

Support
The book’s support website, www.stroustrup.com/Programming, contains a va-
riety of materials supporting the teaching and learning of programming using
this book. The material is likely to be improved with time, but for starters, you
can find:

* Slides for lectures based on the book

* An instructor’s guide

* Header files and implementations of libraries used in the book

* Code for examples in the book

* Solutions to selected exercises

* Potentially useful links

* Errata

Suggestions for improvements are always welcome.

Acknowledgments

I'd especially like to thank my late colleague and co-teacher Lawrence “Pete” Pe-
tersen for encouraging me to tackle the task of teaching beginners long before I'd
otherwise have felt comfortable doing that, and for supplying the practical teach-
ing experience to make the course succeed. Without him, the first version of the
course would have been a failure. We worked together on the first versions of the
course for which this book was designed and together taught it repeatedly, learn-
ing from our experiences, improving the course and the book. My use of “we” in
this book initially meant “Pete and me.”

x Preface

Thanks to the students, teaching assistants, and peer teachers of ENGR 112
at Texas A&M University who directly and indirectly helped us construct this
book, and to Walter Daugherity, who has also taught the course. Also thanks to
Damian Dechev, Tracy Hammond, Arne Tolstrup Madsen, Gabriel Dos Reis,
Nicholas Stroustrup, J. C. van Winkel, Greg Versoonder, Ronnie Ward, and Leor
Zolman for constructive comments on drafts of this book. Thanks to Mogens
Hansen for explaining about engine control software. Thanks to Al Aho, Stephen
Edwards, Brian Kernighan, and Daisy Nguyen for helping me hide away from
distractions to get writing done during the summers.

Thanks to the reviewers that Addison-Wesley found for me. Their comments,
mostly based on teaching either C++ or Computer Science 101 at the college
level, have been invaluable: Richard Enbody, David Gustafson, Ron McCarty,
and K. Narayanaswamy. Also thanks to my editor, Peter Gordon, for many useful
comments and (not least) for his patience. I'm very grateful to the production
team assembled by Addison-Wesley; they added much to the quality of the book:
Julie Grady (proofreader), Chris Keane (compositor), Rob Mauhar (illustrator),
Julie Nahil (production editor), and Barbara Wood (copy editor).

In addition to my own unsystematic code checking, Bashar Anabtawi, Yinan
Fan, and Yuriy Solodkyy checked all code fragments using Microsoft C++ 7.1
(2003) and 8.0 (2005) and GCC 3.4.4.

I would also like to thank Brian Kernighan and Doug Mcllroy for setting a
very high standard for writing about programming, and Dennis Ritchie and Kristen
Nygaard for providing valuable lessons in practical language design.

Contents

Preface xxiii

Chapter 0 Notes to the Reader 1

0.1 The structure of this book 2
0.1.1 General approach 3
0.1.2 Drills, exercises, etc. 4
0.1.3 What comes after this book? 5
0.2 A philosophy of teaching and learning 6
0.2.1 The order of topics 9
0.2.2 Programming and programming language 10
0.2.3 Portability 11
0.3 Programming and computer science 12
0.4 Creativity and problem solving 12
0.5 Request for feedback 12
0.6 References 13
0.7 Biographies 14
Bjarne Swoustrup 14
Lawrence “Pete” Petersen 15

xii Contents

Chapter 1

Computers, People, and Programming 17

1.1 Introduction 18

1.2 Software 19

1.3 People 21

1.4 Computer science 24

1.5 Computers are everywhere 25
1.5.1 Screens and no screens 26
1.5.2 Shipping 26
1.5.3 Telecommunications 28
1.5.4 Medicine 30
1.5.5 Information 31
1.5.6 A vertical view 32
1.5.7 So what? 34

1.6 Ideals for programmers 34

Part | The Basics 41

Chapter 2

Chapter 3

Chapter 4

Hello, World! 43

2.1 Programs 44
2.2 The classic first program 45
2.3 Compilation 47

2.4 Linking 51
2.5 Programming environments 52

Objects, Types, and Values 59

3.1 Input 60
3.2 Variables 62
3.3 Input and type 64
3.4 Operations and operators 66
3.5 Assignment and initalization 69
3.5.1 An example: detect repeated words 71
3.6 Composite assignment operators 73
3.6.1 An example: find repeated words 73
3.7 Names 74
3.8 Types and objects 77
3.9 Type safety 78
3.9.1 Safe conversions 79
3.9.2 Unsafe conversions 80

Computation 89

4.1 Computation 90
4.2 Objectives and tools 92

Chapter 5

4.3 Expressions 94
4.3.1 Constant expressions 95
4.3.2 Operators 96
4.3.3 Conversions 98
4.4 Statements 99
44.1 Selection 101
4.4.2 Iteration 108
4.5 Functions 112
4.5.1 Why bother with functions? 114
4.5.2 Function declarations 115
4.6 Vector 116
4.6.1 Growinga vector 118
4.6.2 A numeric example 119
4.6.3 A text example 121
4.7 Language features 123

Errors 131

5.1 Introduction 132
5.2 Sources of errors 134
5.3 Compile-time errors 134
5.3.1 Syntax errors 135
5.3.2 Type errors 136
5.3.3 Non-errors 137
54 Link-time errors 137
5.5 Run-time errors 138
5.5.1 The caller deals with errors 140
5.5.2 The callee deals with errors 141
5.5.3 Error reporting 143
5.6 Exceptions 144
5.6.1 Bad arguments 145
5.6.2 Range errors 146
5.6.3 Bad input 148
5.6.4 Narrowing errors 151
5.7 Logic errors 152
5.8 Estimaton 155
5.9 Debugging 156
5.9.1 Practical debug advice 157
5.10 Pre- and post-conditions 161
5.10.1 Post-conditions 163
5.11 Testing 164

Contents xiii

xiv Contents

Chapter 6 Writing a Program 171

6.1 A problem 172

6.2 Thinking about the problem 173
6.2.1 Stages of development 174
6.2.2 Strategy 174

6.3 Back to the calculator! 176
6.3.1 First attempt 177
6.3.2 Tokens 179
6.3.3 Implementing tokens 181
6.3.4 Using tokens 183
6.3.5 Back to the drawing board 185

6.4 Grammars 186
6.4.1 A detour: English grammar 191
6.4.2 Writing a grammar 192

6.5 Turning a grammar into code 193
6.5.1 Implementing grammar rules 194
6.5.2 Expressions 195
6.5.3 Terms 198
6.5.4 Primary expressions 200

6.6 Trying the first version 201

6.7 Trying the second version 206

6.8 Token streams 207
6.8.1 Implementing Token_stream 209
6.8.2 Reading tokens 211
6.8.3 Reading numbers 212

6.9 Program structure 213

Chapter 7 Completing a Program 219

7.1 Introduction 220

7.2 Input and output 220

7.3 Error handling 222

7.4 Negative numbers 227

7.5 Remainder: % 228

7.6 Cleaning up the code 231
7.6.1 Symbolic constants 231
7.6.2 Use of functions 233
76.3 Code layout 234
7.6.4 Commenting 236

7.7 Recovering from errors 238

7.8 Variables 241
7.8.1 Variables and definitions 241
7.8.2 Introducing names 246
7.8.3 Predefined names 249
7.8.4 Are we there yet? 249

