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ABSTRACT

Embedded capacitor technology, where thin film capacitors are integrated at on-chip
and/or off-chip levels, offers high packaging densities and improved electrical
performance at potentially reduced costs of capacitor fabrication and integration. This
research explores and establishes the leverages of using thin film embedded capacitors
over currently used surface mount discrete capacitors. In particular, this thesis focuses
on developing pulsed dc reactively sputtered tantalum oxide (Ta,Os) thin film
capacitors to be integrated into established interconnect technologies of IC chips and

packages.

A correlation between electrical breakdown field and dielectric constant,
Egr (MV/cm) = (20/\/:97) is empirically determined and used to establish a design

space for breakdown voltage and capacitance density of planar capacitors, with film
thickness and material dielectric corrstant as parameters. This design space sets the
limits for “best one can achieve” (BOCA) breakdown voltages and capacitance
densities using a particular dielectric. The validity of the developed design space is
experimentally verified with Ta,Os thin films over a wide range of film thickness (0.05
to 5.4 um). Detractors causing the deviations from the BOCA breakdown voltages are
identified and corrected experimentally. In particular, substrate cooling during
deposition of “thicker” (> ~1 um) films is required to deposit stoichiometric Ta,Os
exhibiting BOCA breakdown voltages, and “peak-to-valley” roughness at the
metal/dielectric interfaces must be less than 10% of dielectric film thickness to avoid

pre-mature breakdown of thin film capacitors.

An experimentally verified analytical model for pulsed dc reactive sputtering of
Ta;Os films is described and evaluated. The influences of important process variables,
like oxygen flow rate and sputtering ion current, on the oxygen partial pressure in the

chamber, deposition rate, film stoichiometry as well as film breakdown and leakage
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characteristics are predicted using this model. The experimentally established existence
of multiple oxygen partial pressures at a given oxygen flow rate (hysteresis loop) is
theoretically explained using steady state analysis. The experimental results suggest that
in order to ensure the electrical reliability of Ta,Os films, deposition should be done at
oxygen flow rates more than that required to go beyond the hysteresis region in oxygen

partial pressure versus flow rate curve.

High frequency test vehicles were designed and fabricated to evaluate the
electrical performance of Ta;Os, SiO,, and SizNy thin film capacitors over a wide range
of frequencies (dc to 20 GHz). Ta;0s, SiO,, and SizN, show no dispersion at least up to
20 GHz. The total inductance of power connect vias is determined to be less than 50
pH/um of via, which is at least two orders of magnitude lower than most discrete
capacitors along with connection leads (> 4 nH). Providing several vias in parallel
further reduces the overall inductance of the connection paths in thin film capacitors.
The shorter connections and elimination of connection leads in thin film decoupling
capacitors make them highly suitable for integration into 2D and 3D structures. Thin
film capacitors based on SiO;, Si3Nj, and Ta;Os can provide capacitance densities
comparable to the state-of-the-art surface mount discrete decoupling capacitors
(~ 30 nF/cm?). The leakage current densities below 10® A/em? (at 0.5 MV/cm) are

achieved with SiO,, SisNy4 and Ta,Os thin film dielectrics.

The extent of Cu diffusion/drift into Ta,Os films is determined and compared
with Al, Ta, and Ti at various biasing and temperature conditions using bias-
temperature-stress (BTS) and triangular voltage sweep (TVS) techniques. No Cu
diffusion was detected at 150 °C at least till 0.75 MV/cm. While, Cu diffuses/drifts into
Ta;0;s at aggressive temperature conditions, i.e., at 300 °C was detected, a thin layer of

Ti or Ta (~30 nm) acts as an excellent Cu diffusion barrier into Ta,Os.
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