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PREFACE

The present book has developed from lectures which I held at the
Jagiellonian University (Cracow), at the Mathematical Institute of the
Polish Academy of Science and at the Warsaw University during the
years 1966-74. The first written form of those lectures was the book
under the same title (in Polish) published by the Polish Scientific
Publishers, Warsaw, in 1972. The present edition is an extended version
of the Polish edition.

In the preparation of this book I have made heavy use of the mono-
graphs by L. Schwartz [47], L. Hérmander {29] and of the concepts
introduced by S. Lojasiewicz in his papers [37] and [38].

The main purpose of this book is a presentation, in a distributional
setting, of the simplest limit problems for the basic operators of mathe-
matical physics. It has proved advisable to develop the technique of
distribution-valued functions. In all problems comsidered one of the
variables plays a special role. If the limit problem in question concerns
the “upper” half-space (with respect to the distinguished variable),
i.e., if that variable assumes positive values only, then the solution
of the problem can be reduced to the construction of an appropriate
distribution-valued function defined on the_ interval (0, + o). Such
a function is then constructed by a method consisting in an application
of the Fourier transformation.

By a solution of a differential equation we mean any distribution
satisfying this equation. Such a distribution can, of course, be in fact
a function of a sufficient class of regularity; then it is a classical solu-
tion. If the data occurring in the limit problems considered are suffi-
ciently regular functions, then every distributional solution is a classical
one. Thus classical solutions are obtained from distributional solutions
without resorting to the classical theory of partial differeitial equations.
Consequently the text is intelligible to students unfamilidr. with such
equations and can serve as a manual which is to acquaint the reader
with the basic topics of that domain and as an introduction into the
modern theory of linear differential operators (cf. [29], [63]). Never-

Vil



PREFACE

theless, it should be stressed that the book is a monograph and not
a course on differential equations: there are many important topics
which it does not touch upon such as e.g. the eigenvalue problem or
the theory of characteristics and the classification of differential equa-
tions. Course expositions of those topics can be found in [16], [61],
[11], [33].

The book is self-contained. It presupposes only the knowledge of
the elementary calculus (including ordinary differential equations and
functions of one complex variable). A few theorems of functional
analysis which are applied in the text have for convenience been formu-
lated in the Introduction.

The first two chapters contain the theory of distributions and the
Fourier transformation, and should be regarded as a basis for the
sequel, dealing with partial differential operators. Besides the material
contained in all text books on distributions, those chapters are dealing
also with certain specific topics: the concept of distribution-valued
functions and their properties, and the operation of fixing variables
in a distribution (§§ 12, 13). To each of these notions corresponds its
analogue concerning the case of tempered distributions (§ 19). Within
this group of topics we might perhaps include also the operation of
substitution in distributions (§§ 6.2 and 20.7),' emphasis being put on
homogeneous distributions. Fheir properties are employed in Chapter
VI and in the Appendix; it is also worth noticing that they play an
important role in the theory of pseudo-differential operators, a theory
developing very intensively.

The exposition of the theory of distributions follows the functional
approach founded by Sobolev and Schwartz. It is preceded by a short
introduction on vector spaces in which convergence has been defined
by a sequence of semi-norms (§ 1).

Chapter ITI contains general definitions and theorems concerning
linear differential equations and presents certain methods useful in
solving such equations. Subsequent chapters are devoted to the study of
three principal differential operators of mathematical physics: the wave
operator (Chaptpr IV), the operator of heat conduction (Chapter V),

! The first number refers to section, the second to subsection. Thus § 6.2 means:
Subsection 2 of Section 6.
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PREFACE

and the Laplace and Helmholtz operators (Chapter VI). Besides Chapters
I-VI the book contains an Appendix written in January 1976.

The Fourier transformation is a powerful ¢ool, which allows one
to obtain fundamental solutions of the above operators in a very natural
way. A partial differential equation is transformed into an easily solvable
ordinary equation, and it remains to “re-tramslate” the solution by
applying the inverse Fourier transformation. This method is not necessar-
ily the simplest one (the shortest way generally conmsists in a direct
verification that the given distribution is indeed a fundamental solu-
tion); however, it has the advantage that it always leads to a solution
and does not require its previous knowledge (or guessing). The diffi-
culties which arise are rather of technical nature and consist in the
computation of the Fourier transforms involved. Those transforms
which are necessary in the application to the operators dealt with in
Chapters IV-VI are computed in the examples of Chapter IT (§ 21).

The first two chapters can also serve as a manual for an introductory
course on distributions for mathematicians.! Then the monographs
[47], [62], [30] and [21]-[23] can be suggested for further study. The
exposition of the theory of distributions in Schwartz’s monograph
[47] follows the style and methods of the treatise of Bourbaki [6] and
[7] and often resorts to it. Monographs [62] and {30] themselves contain
a course on topological vector spaces. Other approaches to the theory
of distributions can be found in [35] and {1].2

In numerous books distributions are ¢reated with special regard
to the application to differential equations. This concerns, in particular,
the above-mentioned monographs [47] and {21}-[23], and also many
others, e.g. [48], [65], [4], [10]. A brief survey of the basic properties
of distributions and of the Fourier transformation with an applica-
tion in the theory of holomorphic functions is given in -[9]; applica-
tions in harmonic analysis are pointed out in {12].

Books [5], [13], [65] are texts for a course on differential equations;
they are all based on the theory of distributions. In [13] emphasis is put

! Regarding those chapters as such, the reader can omit §§ 19 and 21 without
loss.
* Some of the bibliographical items are menfioned caly here, in the preface,
just to make it clear that the theory of distributions admits various ways of approach
and development, as well as diverse possibilities of spplications.



PREFACE

on applications rather than theory. Moreover, various applications
of distributions and differential operators in physics and technology
can be found in [3], [48}, [50]. The fundamental work which presents
differential equations of mathematical physics in a classical setting is
[11]. [33] is similar in character.

In the present book the material is exposed $0 as to be intelligible
to beginners. Most of theorems are proved in detail. Exercises are
numerous and are closely connected with the main text. Some of them
are just illustrations, others are complement to the text. Sometimes they
contain facts important for further reading and are referred to in sub-
sequent sections. Occassionally also proofs of theorems omitted in the
main text are placed among the exercises. Such a system has been adopted
in order to encourage the reader to active reading. More difficult exer-
cises are supplied with hints, which sometimes give, in fact, an outline
of the proof. Those exercises which can be omitted without loss for
further reading and are relatively difficult are marked with an asterisk.

The book consists of 44 sections (abbreviated: §§) numbered con-
tinuously throughout the Introduction and all the 6 chapters. Some
sections are divided into subsections. Theorems, propositions, lemmas,
corollaries, examples, formulae, exercises and also subsections are num-
bered independently in each section. Referring to a theorem (a propo-
sition, etc.) within one section, we use only its successive number in
that section; e.g., we write: see Theorem 3. Referring to a theorem (etc.)
in other sections, we use double numbering, the first number referring
to the section and the second indicating the successive item within it;
thus Theorem 7.3 denotes Theorem 3 in § 7. A similar rule applies
to subsections, as was mentioned in footnote 1 on p. VIII. Numbers in
brackets denote formulae: e.g. (12) refers to the 12th formula in the
same- section, while (7.12) is the 12th formula in § 7. Numbers in square
brackets refer to the bibliography.

Bibliographical references are mostly given in footnotes, which are
numerous and contain various comments on the text. Footnotes are
referred to by quoting the note number and the page.

The book is supplemented with indexes of names, subjects and
symbols.

February 25, 1975 ' Zofia Szmyadt
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INTRODUCTION

§ 0. TERMINOLOGY AND NOTATION

We employ the usual notation of set theory. The union, the intersec-
tion and the difference of sets 4 and B are denoted by 4 UB, 4 NB,
A\ B, respectively. @ is the empty set. We write @ € 4 if a is an element
of A, otherwise we write a ¢ 4. The notation 4 < B (or B > 4) means
that A is a subset of B. If X is some space containing A4, then the set
X\4 is called the complement of A (with respect to X) and is denoted
by the symbol CA.

The set of all elements of a set 4 satisfying condition f{ - ) is denoted
by {a e A: f(a)}, or shortly {a: f(a)} if the set 4 is fixed and no con-
fusion'is likely to arise.

The product of sets A and B is the set A x B consisting of all ordered
pairs (a, b) with ae 4, be B.

The notation

u:A-»B or Asap u(@eB

means that u is a function whose domain is the set 4 and whose counter-
domain is a subset of B. This is also read as: “u is a mapping of (the
set) A into (the set) B”, or “u is a function defined on (the set) 4 with
values in (the set) B”, or else “u is a B-valued function defined on A4”.
The words “mapping” and “function” have the same meaning. For
certain special classes of functions we shall use the expressions: operation,
operator, transformation. A functional is a' number-valued function.
The supremum of a real-valued function on a set 4 is denoted by supu
or supu, or s‘texgu(a). Similarly the infimum of ¥ on 4 is written as

infu or infu, or infu(a). Analogous notation is employed for maxu
A osd

and minu on A4. ,

If for any b € B there is an g € A such that u(a) = b, we say that
the function u maps the set A onto the set B. A function with this pro-
perty is also called a surjection of A onto B. If u maps A into (but not

1



INTRODUCTION

necessarily onto) B in a one-to-one way, i.e., if we have u(a,) # u(a,)
for a, # a,, then we say that u is an injection or an embedding of A
into B. A mapping which is both an injection and a surjection is called
a bijection. If u: A — B is a bijection, then its inverse u~!: B— A
is defined by: w1(b) = a iff u(a) = b (iff is an abbreviation for: if
and only if). :

If u: A — B is any mapping and if 4 is a subset of 4, then the
restriction of u from A to A is the mapping: 4 3 ar u(a) € B.

If u: A —> B, v: B C, then the superposition of u and v, i.e. the
mapping 4 5 a v{u(a)) € C, is denoted by veu.

Suppose that v is a function defined in the product of two sets 4, B
and has values in a set C:

Ax B> (a,bym v(a,b)eC.
Then for any fixed values e B, d € A there are well defined map-
pings

Asawv(a,b)eC, Babmo(@,b)eC.
We denote these mappings by the symbols v(-,B), v(@, -), respec-
tively.

E denotes the set of real numbers. The n-dimensional Euclidean
space is the product of n copies of the set E, i.e., the set of all points
x = (x4, ..., Xy}, where x,, ..., x, are finite real numbers. The n-di-
mensional Euclidean space is denoted by E®. The numberx; (i = 1, ..., n)
is called the i-th coordinate of the point x. We denete by |x|, the length
of the vector x (the Euclidean norm of the point x), i.e., the number

- given by
|x}Z = x4+ ... +22.
If x = (xy, ..., %)€E", y = (34, ..., y) € E", we write

Xy = X ¥y + "'.+xnyn

and call this number the scalar product of x and y.
For an r > 0, x € E*, the set

.B(x,")" i ly—=xl, < r}
i called the open ball with centre x and radius 7; for 0 <r, <r,,
x € E”, the set

P(x,ry,r) = {p: ry < |y—=xl3 <rs}



