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Preface

It is not without some hesitation that I have decided to publish this
volume of solved mathematical problems. For while it is essential to
offer the student a large choice of exercises, it is less evident that
providing detailed models of solutions will be useful for him. Moie
precisely, one might feel that a small number of such models, judiciously
chosen, should normally form a part of the mathematical treatises
themselves and that this should be sufficient. However, after several
years of experience, I have come to feel that a collection of exercises,
varied in nature and worked out in detail, can be beneficial, and that
the student needs to learn how to work them out as much as he does
to reason in connection with them and to find their solutions.

This collection is intended for students of applied mathematics,
physics, and engineering. The spirit in which it is written corresponds
approximately to that of the upper division level of instruction in
courses on mathematical techniques. The subjects treated, however, are
often found in courses on a somewhat lower level (e.g., integral calculus)
as well as a somewhat higher level (e.g., mathematical methods in
physics).

These exercises do not pretend in any way to take the place of a .
course of instruction. To help the reader, each chapter is preceded by
a brief introduction in which certain essential formulas are recalled and"
in which the prerequisites are briefly outlined. Of course, such pre-
requisites should have already been acquired in oral or written instruc-
tion. .

Although there are few books covering all the material, one can find
the substance of it in quite a large number of works under the general
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headings of applied mathematics, advanced calculus, matrix and tensor
calculus, etc., written for the upper undergraduate level and designed
for engineers and physicists. Among the texts that are best suited we
may cite:

R. Courant and D. Hilbert, “Methods of Mathematical Physics,”
Volume 1. Wiley (Interscience), New York, 1953.

This 1s a fundamental reference work which has served as a
model for all advanced books in applied mathematics. One need
not have studied it in detail to be able to do these exercises, but
familiarity with certain chapters is essential.

R. V. Churchill, “Complex Variables and Applications,” 2nd ed.
McGraw-Hill, New York, 1960.

R. Courant and F. John, “Introduction to Calculus and Analysis.”
Wiley (Interscience), New York, 1965.

J. Irving and N. Mullineux, ‘“Mathematics in Physics and Engineering.”
Academic Press, New York, 1959.

I. S. Sokolnikoff and R. M. Redheffer, ‘“Mathematics of Physics and
Modern Engineering.” McGraw-Hill, New York, 1958.

It i1s difficult to state explicitly the sources of the exercises whose
solutions are worked out in the present collection. Some of them are
original. Many have been suggested in a more or less conscious way by
analogous ¢xercises that appear rather ubiquitously in mathematical
litetature. Pome of them are of the nature of supplementary material
to a course of instruction. With very few ‘exceptions, the statements of
the problems appear in the author’s “Cours de mathématiques” (Masson,
Paris, 1964). As a whole, the exercises chosen are of medium difficulty.
The more difficult ones are indicated by an asterisk preceding the title
of the exercise.

The subjects treated have been divided into six chapters which are
devoted tp simple integrals, uniform convergence and normed spaces, line
integrals and multiple integrals, analytic functions, ordinary differential
equations, and partial differential equations. This order is not happen-
stance. In each chapter the reader should be capable of using the material
constituting the subject of the exercises of the preceding chapters.
Although the beginning of Chapter 2 is devoted to uniform convergence,
numerous exercises in the following chapters constitute a training in
the techniques of continuity of series and integrals, and of differentiation
and integration under the integral sign. Similarly, the residue theorem,

"which is the subject of the end of Chapter 4, is used in numerous
exercises in Chapters 5 and 6. In Chapter | there are no exercises on
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the convergence of improper integrals. Such exercises inevitably con-
stitute an initial problem in various exercises in Chapter 2 dealing
with the uniform convergence of integrals. Orthogonal functions appear
first in Chapter 2 and again in Chapter 5 in connection with problems
on second-order linear differential equations. Very few topics from the
calculus of variations have been treated. They appear at the end of
Chapter 5 although they are sometimes more of an algebraic than a
functional nature.

Here we do not propose to give exercises on probability theory.
Such a subject requires special preparation. However, the relationships
between probability theory and certain questions in algebra and integral
calculus are so close that several exercises are worded in probability
theory language. For the reader who may not be familiar with the
elements of probability theory, the few words of introduction preceding
the statement of the problems will enable him to make the necessary
adjustment.

J. Bass
February, 1966



A Note about the French Edition

The original French edition of this volume contains all the material
found here and, in addition, a chapter on linear algebra and a short chapter
on probability. It corresponds very closely to the author’s “Cours de mathé-
matiques” (3rd ed., Masson, Paris, 1964) and, with only a few exceptions,
the statements of the problems can be found there. Among the French texts
suitable for background study are:

J. Bass, “Eléments de calcul des probabilités.” Masson, Paris, 1964. An
English translation, “Elements of Probabilitv Theory.” will be pub-
lished by Academic Press in 1966.

A. Hocquenghem and P. Jaffard, “Mathématiques.” Masson, Paris, 1964.

J. Kuntzmann, “Mathématiques de la physique et de la technique.” Hermann,
Paris,

L. Schwartz, “Méthodes mathématiques pour les sciences physiques.” Her-
mann, Paris, 1961.

The rough drafts of these exercises were prepared by the assistants of
I'ficole Nationale Superiglire de I’ Aéronautique between 1962 and 1964. MM.
J. Azema, J. P. Bertrandias, J. Couot, M. Gatesoupe, M. Mendes-France, M.
Pianko, J. Servant, and Vo Khac Khoan had the responsibility for individual
chapters, and I am very gratefu! to them for their assistance. I also wish to
thank MM. J. Dhombres, F. Dress, F. Hoffman, J-F. Mela, Pham Phu Hien,
and Ph. Robba who reread the manuscripts and the proofs and the former
assistants at I'Bcole Nationale Supérieure de I’Aéronautique and I’Ecole
Nationale Superieure des Mines — MM. P. Belayche, F. Bourion, F. Ger-
main, J. Germain, J-P. Guiraud, G. Legrand, J. Stern, and R. Vallée — to
whom I am indebted for many interesting comments.

J. Bass
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CHAPTER I

Sequences, Series, and Definite Integrals

‘This chapter contains several exercises on the fundamental concepts
of analysis. These exercises do not require extensive preparation on the
part of the reader. It will be sufficient for him to know various definitions
that are part of almost all curricula or special mathematical courses
and certain elementary properties of the objects in question. The most
frequently encountered are the following:

Disiance in general. The distance between two functions. The distance
between two sequences.

Norms in a vector space. The norm of a function.
Classical properties of continuous and monctonic functions.

Convergence of numerical sequences and series. Absolute convergence.
Alternating series.

Definite integrals. Integrable functions of a single variable. The first
and second mean-value theorems. Schwarz’ inequality.

The integrals, of course, are in the sense of Riemann. The exercises
on Holder’s inequality would have quite extensive sequels if we were
"using the Lebesgue integral. However, since we are dealing here with
purely algebraic properties of the definite integral, only the elementary
axioms come into play: The integral is a linear functional and is additive
as a function of the interval of integration; integrable functions constitute
an algebra; the integral of a positive function is positive; the integral
of the absolute value of a function is at least as great as the absolute
value of the integral of the function; if f is nonnegative and its integral
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2 |. SEQUENCES, SERIES, AND DEFINITE INTEGRALS

is zero, then f is zero almost everywhere. With these principles, it
hardly matters what kind of integral one is using.

All the definite integrals are of bounded functions defined on a
compact interval. The chapter contains no exercises on ‘‘generalized”
(i.e., improper) integrals, either integrals over an infinite interval or
integrals of unbounded functions. Integrals of this type will appear
frequently in Chapter 2 in connection with exercises on uniform con-
vergence. Among the questions posed, one frequently encountered will
be to prove the convergence of an integral, and it has not seemed
advisable to isolate these exercises. We therefore refer the reader to
Chapter 2. Also in Chapter 2 are exercises on the Bolzano-Weierstrass
theorem, in connection with uniform convergence.

1. Examples of the distance between two functions
and between two sequences

Let us give an example of a distance between two functions that is
not a norm.

Problems. A. Suppose that @ and b are positive numbers. Show
that
a—+b <2 b .
1l +a+b l4+a “1+5b

B. Let f(x) be an integrable function on the interval a < x < g
and set

- [ e
Show that
L(f + g) <L(f) + L(2)-

Can we define the distance between two functions with the aid of the
functional L ?

C. Let u and v be any two sequences of real numbers the values of
which are u,,...,u,,... and v,, ..., v, ... . Let a, be the general term
of a convergent sequence of positive numbers. Set

W) = Sen T L) = Do
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Denote by u + v the sequence whose general term is u, + v, . Show
that

L(u + v) <L(u) + L(v).

Solutions. A. Since a and b are positive numbers, the inequality

a+b a b
T+a+tb ST+a ' T+6 (1)
follows from the obvious inequalities
a a b & b
l+a+b "1 +a’ 1 +a +b 1 +b°

Equality can hold only if a or b is zero.

B. Since fis an integrable function on the interval [, 8], the functional
L. maps f into the positive number

)i
L(f) J’ ¥ ] dx  (x<B).

Let us show that the functional L verifies the triangie inequality

L(f + g) <L(f) + Lig). ()
First of all, we have

If el <IfL+ gl
Since the function x/(I + x) is an increasing function, we obtain

Vind JikapPedli s dbsal 4
T+ 17+l ST+ +1g]
szl 181

S+ f 4 g]

on the basis of inequality (1). This proves inequality (2).

Let us now recall the definition of the distance between two functions:
The distance /{ f, g) between two functions f and g is a real number
that satisfies the following axioms:

() (f,g) >0 iff#g

(b) i(f.5) =0,

(c) «f,8) = g ),

(d) f,g) <Uf k) + Uh g) for arhitrary functions f, g, 4.
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If we agree to consider two functions f and g equal when L( f — g) = 0,
we see that the functional L enables us to define the distance between
two functions f and g. We simply set

i(f.e) =L(f - 8-

This definition is valid for integrable functions defined on the interval
[«, B]. The functional L( f) may be used to define the distance between
two functions, but it is not a norm in the vector space of functions that
are integrable on [a, B]. To see this, consider the vector space of real
functions. Here, if m denotes a real number, the requirement of homo-_
geneity Limf) = | m | L( f) is not verified.

C. We have seen that

| #4a + vy | l#a|  lval
I A B TR TS DY

Since | u, |/(1 + | #,]) < I, the series X a,|u, |/(1 + | u, |) converges.
If we multioly the two sides of the above inequality by @, and sum
over n, we obtain

L{u + v) < L(u) + L(v),
so that

L(u)“Za lu"l

"1 Llu

The functional L(u — v) can be considered as the distance between
the twe .- 7ss u and v. It is positive except when u, = v, for every n,
in which case it is zero. It is symmetric with respect to # and v. Finalily,
it satisfies the triangle inequality. It is interesting to note that this
definition of distance is valid for infinite sequences irrespective of their
_ convergence or divergence.

1. Extreme values of continuous functions
Problems. A. Let f(x) be a continuous function that is positive

everywhere in the closed interval [a, 8], where a < b. Then f(x) attains
a maximum value M at a point x, in [a, b]. Show that

= i [ o o
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B. Show that, if f{x) is strictly positive, the minimum of f(x) is

¢ _equal to
im - "o "

Solutions. A. By hypothesis, the function f is positive and continuous
on the closed interval [a, b]. Therefore, it attains its maximum M at
least once on ‘[q, b], at some point x,. Let us suppose first that x; is
different from a and b. For any € > 0, there exists a number « less
than x, — a and b — x; such that the inequality

| x— x| <

implies that

M—e<fx)<M

M-€ -
M

l

0 a X b x

Ficure 1

Let us denote by E the union of the two intervals (@, x, — «) and
(%0 + o, b) Then

b [ e = 2 [ a4 [ () de

Consequently,

—L ) LA > Ri_" 20(M — ). )]
b—al, E i

On the other hand, the mequahty f(x) < M implies that
,E—;—d f [F()]" dx < M,

so that

() o<t fuere] "< o
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As 7 increases without bound, the factor [2a/(b — a)]'/* tends to 1.
Therefore, there exists a number N, such that the inequality n > N,
implies the double inequality

-

1 R . 1/n
M—2e<[p= [ o] " <M.
This double inequality means that
’ 1 b 1/n
lim [ [ [ de] = M. 3)

Remark. In the above, the number o« was chosen sufficiently small
that the interval (x;, — «, x; + «) was.contained in the interval (a, b).
In the event that x; is, let us say, the point a, it will be sufficient to
replace the interval (¥, — a, x, + o) with (a, x, + «).

B. Let us use inequality (3) to show that

Jim 5=, e as] " = min e, @
We set n' = —n. Then
oL [_ ( Sl dx] B = [b b{_f;a)]‘ dx]—w
= (maxf( )) = min f(x).

The function 1/f(x) verifies the conditions of problem A, since f(x)
does not vanish on the closed interval {a, b] and has a positive minimum
in that interval.

C. These formulas express the extreme values of a continuous function
on an interval in terms of a limit without requiring that the function
be differentiable. Therefore, this procedure is more general (although
less practical) than that of finding the points at which the derivative
of f(x) (which is also the result of a limiting process) vanishes.

Example. f(x) =1 —x for 0 < x < 1.
The maximum of f(x) is given by

lim U ( -A)’d‘t] n—lim(—’; J 1 )”" -

n-»ax n-=w

This maximum appears at the point [well defined since f(x) is continuous]
at which f(x) = 1. This is the point x = 0.



