

Power Laws in the Information Production Process: Lotkaian Informetrics

Leo Egghe

Power Laws in the Information Production Process: Lotkaian Informetrics

Leo Egghe

2005

Amsterdam – Boston – Heidelberg – London – New York – Oxford – Paris San Diego – San Francisco – Singapore – Sydney – Tokyo ELSEVIER B.V. Radarweg 29 P.O.Box 211, 1000 AE Amsterdam, The Netherlands ELSEVIER Inc. 525 B Street, Suite 1900 San Diego, CA 92101-4495 ELSEVIER Ltd The Boulevard, Langford Lane Kidlington, Oxford OX5 1GB

ELSEVIER Ltd 84 Theobalds Road London WC1X 8RR UK

© 2005 Elsevier Ltd. All rights reserved.

This work is protected under copyright by Elsevier Ltd, and the following terms and conditions apply to its use:

Photocopying

Single photocopies of single chapters may be made for personal use as allowed by national copyright laws. Permission of the Publisher and payment of a fee is required for all other photocopying, including multiple or systematic copying, copying for advertising or promotional purposes, resale, and all forms of document delivery. Special rates are available for educational institutions that wish to make photocopies for non-profit educational classroom use.

Permissions may be sought directly from Elsevier's Rights Department in Oxford, UK: phone (+44) 1865-843830, fax (+44) 1865-853333, e-mail: permissions@elsevier.com. Requests may also be completed on-line via the Elsevier homepage (http://www.elsevier.com/locate/permissions).

In the USA, users may clear permissions and make payments through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA; phone: (+1) (978) 7508400, fax: (+1) (978) 7504744, and in the UK through the Copyright Licensing Agency Rapid Clearance Service (CLARCS), 90 Tottenham Court Road, London W1P 0LP, UK; phone: (+44) 20 7631 5555; fax: (+44) 20 7631 5500. Other countries may have a local reprographic rights agency for payments.

Derivative Works

Tables of contents may be reproduced for internal circulation, but permission of the Publisher is required for external resale or distribution of such material. Permission of the Publisher is required for all other derivative works, including compilations and translations.

Electronic Storage or Usage

Permission of the Publisher is required to store or use electronically any material contained in this work, including any chapter or part of a chapter.

Except as outlined above, no part of this work may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission of the Publisher.

Address permissions requests to: Elsevier's Rights Department, at the fax and e-mail addresses noted above.

Notice

No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made.

First edition 2005

ISBN: 0 12 088753 3

Working together to grow libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER

BOOK AID International

Sabre Foundation

Power Laws in the Information Production Process: Lotkaian Informetrics

Library and Information Science

Series Editor: Bert R. Boyce

School of Library & Information Science Louisiana State University, Baton Rouge

Recent and Forthcoming Volumes

Mike Thelwall
An Information Science Approach

Donald Case
Looking for Information

Matthew Locke Saxton and John V. Richardson Understanding Reference Transactions: Turning Art Into a Science

Robert M. Hayes

Models for Library Management, Decision-Making, and Planning

Charles T. Meadow, Bert R. Boyce, and Donald H. Kraft Text Information Retrieval Systems, Second Edition

Charles T. Meadow
Text Information Retrieval Systems

A. J. Meadows
Communicating Research

V. Frants, J. Shapiro, & V. Votskunskii
Automated Information Retrieval: Theory and Methods

Harold Sackman

Biomedical Information Technology: Global Social Responsibilities for the Democratic Age

Peter Clayton

Implementation of Organizational Innovation: Studies of Academic and Research Libraries

Bryce L. Allen
Information Tasks: Toward a User-Centered Approach to
Information Systems

My wife is thanking me for the many quiet evenings at the time of the writing of this book.

To Ute, because she asked for it.

PREFACE

Explaining and hence understanding is one of the key characteristics of human beings. Explaining is making logical, mathematical deductions based on a minimum of unexplained properties, called axioms. Indeed, without axioms, one is not able to make deductions. How these axioms are selected is the only non-explainable part of the theory. In fact, different choices are possible leading to different, in themselves consistent, theories which conflict when considered together. A typical example is the construction of the different types of geometries, Euclidean and non-Euclidean geometries which are in contradiction when considered together but which have their own applications.

In this book the object of study is a two-dimensional information production process, i.e. where one has sources (e.g. journals, authors, words, ...) which produce (or have) items (e.g. respectively articles, publications, words occurring in texts, ...) and in which one considers different functions describing quantitatively the production quantities of the different sources. All functions can be reduced to one type of function, namely the size-frequency function f: such a function gives, for every f = 1, 2, 3, ..., the number f(f), being the number of sources with f items. This is the framework of study and in this framework we want to explain as many regularities that one encounters in the literature as possible, using the size-frequency function f.

As explained above, we need at least one axiom. The only axiom used in this book is that the size-frequency function f is Lotkaian, i.e. a power function of the form $f(n)=C/n^{\alpha}$, where C>0 and α^3 0, hence also implying that the function f decreases. The name comes from its introduction into the literature by Alfred Lotka in 1926, see Lotka (1926). Based on this one assumption, one can be surprised about the enormous amounts of regularities that can be explained. In all cases the parameter α turns out to be crucial and is capable of, dependent on the different values that α can take, explaining different shapes of one phenomenon.

In this book we encounter explanations in the following directions: other informetric functions that are equivalent with Lotka's law (e.g. Zipf's law), concentration theory

(theory of inequality), fractal theory, modelling systems in which items can have multiple sources (as is the case in the system: articles written by several authors), modelling citation distributions. These models are developed from Chapter II on.

Although the law of Lotka is an axiom in this book, in Chapter I we investigate what other models are capable of "explaining" Lotka's law. The only purpose for these developments is to understand why Lotka's law is choosen in this book (and not another type of size-frequency function such as, e.g., an exponential function) and hence to make the choice acceptable (although this is not needed, strictly speaking). For the same reason we also give an overview of situations where Lotka's law is encountered, being the majority of the situations (including the "new" situations as networks, including the Internet).

The author is basing himself on the publications that he has written the past 20 years on the subject but also benifits from the work of many others. To them my sincerest thanks. The author is especially grateful to Professor Ronald Rousseau (co-winner of the 2001 Derek De Solla Price Award) with whom he co-authored several papers but with whom he also had numerous long discussions (often by phone) on the different topics described in this book.

We strongly hope this book will serve the informetrics community in the sense that it shows the logical links between many (at first sight unrelated) informetrics aspects. The informetrician, having read this book, can use it each time he/she encounters a new informetric phenomenon (often in the form of a data set) in the sense that one can investigate if the phenomenon shows regularities that are (or can be) explained using the arguments given in this book. The mathematical knowledge required is limited to elementary mathematics such as first-year calculus. Other, more advanced topics, are introduced in this book.

The author is indebted to the Limburgs Universitair Centrum (LUC) and the University of Antwerp (UA) for their support in doing informetric research: in LUC, the author is chief librarian and coordinator of the research project "bibliometrics" while in UA, he is professor in the School of Library and Information Science, where he teaches the courses on informetrics and on information retrieval. The author thanks Mr. M. Pannekoeke (LUC) for the excellent typing and organization of this manuscript.

Leo Egghe Diepenbeek, Belgium Summer 2004

TABLE OF CONTENTS

Prefa	ce	vii
Table	e of contents	хi
Intro	duction	l
Chap	ter I Lotkaian Informetrics: An Introduction	7
I.1 In	formetrics	7
I.2 W	hat is Lotkaian informetrics ?	14
1.2.1	The law of Lotka	14
1.2.2	Other laws that are valid in Lotkaian informetrics	19
1.3 W	hy Lotkaian informetrics ?	25
1.3.1	Elementary general observations	26
1.3.2	The scale-free property of the size-frequency function f	27
I.3.3	Power functions versus exponential functions for the size-frequency	
	function f	32
1.3.4	Proof of Lotka's law based on exponential growth or based on	
	exponential obsolescence	34
	I.3.4.1 Proof of Lotka's law based on exponential growth: the Naranan	
	model	34
	I.3.4.2 Proof of Lotka's law based on exponential obsolescence: solution	
	of a problem of Buckland	40
I.3.5	Derivation of Mandelbrot's law for random texts	42
I.3.6	"Success Breeds Success"	45
	1.3.6.1 The urn model	46
	I.3.6.2 General definition of SBS in general IPPs	49
	I.3.6.3 Approximate solutions of the general SBS	52
	1.3.6.4 Exact results on the general SBS and explanation of its real nature	55

xii Power laws in the information production process: Lotkaian informetrics

1.3.7	Entropy aspects	65
	1.3.7.1 Entropy: definition and properties	66
	1.3.7.2 The Principle of Least Effort (PLE) and its relation with the	
	law of Lotka	70
	I.3.7.3 The Maximum Entropy Principle (MEP)	76
	1.3.7.4 The exact relation between (PLE) and (MEP)	78
I.4 Pr	actical examples of Lotkaian informetrics	85
1.4.1	Important remark	85
1.4.2	Lotka's law in the informetrics and linguistics literature	86
1.4.3	Lotka's law in networks	87
I.4.4	Lotka's law and the number of authors per paper	90
1.4.5	Time dependence and Lotka's law	92
I.4.6	Miscellaneous examples of Lotkaian informetrics	94
I.4.7	Observations of the scale-free property of the size-frequency function f	98
Chapt	ter II Basic Theory of Lotkaian Informetrics	101
II.1 G	General informetrics theory	101
II.1.1	Generalized bibliographies: Information Production Processes (IPPs)	101
11.1.2	General informetric functions in an IPP	104
II.1.3	General existence theory of the size-frequency function	110
II.2 T	heory of Lotkaian informetrics	114
II.2.1	Lotkaian function existence theory	114
	II.2.1.1 The case $\rho_m = \infty$	114
	II.2.1.2 The general case $\rho_m < \infty$	116
II.2.2	The informetric functions that are equivalent with a Lotkaian	
	size-frequency function f	121

II.3 Ex	stension of the general informetrics theory: the dual size-frequency	
	function h	144
II.4 TI	he place of the law of Zipf in Lotkaian informetrics	150
	Definition and existence	150
	Functions that are equivalent with Zipfs law	152
Chapt	er III Three-dimensional Lotkaian Informetrics	157
III.1 T	Three-dimensional informetrics	157
III.1.1	The case of two source sets and one item set	158
III.1.2	The case of one source set and two item sets	159
III.1.3	The third case: linear three-dimensional informetrics	161
	III.1.3.1 Positive reinforcement	163
	III.1.3.2 Type/Token-Taken informetrics	168
III.1.4	General notes	172
111.2 1	Linear three-dimensional Lotkaian informetrics	175
III.2.1	Positive reinforcement in Lotkaian informetrics	175
III.2.2	Lotkaian Type/Token-Taken informetrics	177
Chapt	ter IV Lotkaian Concentration Theory	187
IV.1 I	ntroduction	187
IV.2 I	Discrete concentration theory	192
IV.3 (Continuous concentration theory	196
IV.3.1	General theory	196
IV.3.2	2 Lotkaian continuous concentration theory	199
	IV.3.2.1 Lorenz curves for power laws	199
	IV.3.2.2 Concentration measures for power laws	205
IV.3.3	A characterization of Price's law of concentration in terms of Lotka's	
	law and of Zipf's law	214

IV.4 C	oncentration theory of linear three-dimensional informetrics	218
IV.4.1	The concentration of positively reinforced IPPs	219
IV.4.2	Concentration properties of Type/Token-Taken informetrics	226
Chapt	er V Lotkaian Fractal Complexity Theory	231
V.1 In	troduction	231
V.2 El	ements of fractal theory	232
V.2.1	Fractal aspects of a line segment, a rectangle and a parallelepiped	233
V.2.2	The triadic von Koch curve and its fractal properties. Extension to	
	general self-similar fractals	234
V.2.3	Two general ways of expressing fractal dimensions	236
	V.2.3.1 The Hausdorff-Besicovitch dimension	236
	V.2.3.2 The box-counting dimension	239
V.3 In	nterpretation of Lotkaian IPPs as self-similar fractals	242
Chapt	ter VI Lotkaian Informetrics of Systems in which Items can have	
	Multiple Sources	247
VI.1 I	ntroduction	247
VI.2 (Crediting systems and counting procedures for sources and "super	
	sources" in IPPs where items can have multiple sources	253
VI.2.1	Overview of crediting systems for sources	254
	VI.2.1.1 First or senior author count	254
	VI.2.1.2 Total author count	254
	VI.2.1.3 Fractional author count	255
	VI.2.1.4 Proportional author count	255
	VI.2.1.5 Pure geometric author count	255
	VI.2.1.6 Noblesse Oblige	256
VI.2.2	2 Crediting systems for super sources	256

Table of contents	xv
VI.2.3 Counting procedures for super sources in an IPP	256
VI.2.3.1 Total counting	257
VI.2.3.2 Fractional counting	258
VI.2.3.3 Proportional counting	258
VI.2.4 Inequalities between $Q_T(c)$ and $Q_F(c)$ and consequences for the	
comparison of $Q_{_T}(c)$, $Q_{_F}(c)$ and $Q_{_P}(c)$	261
VI.2.5 Solutions to the anomalies	266
VI.2.5.1 Partial solutions	267
VI.2.5.2 Complete solution to the encountered anomalies	269
VI.2.6 Conditional expectation results on $Q_{_T}(c)$, $Q_{_F}(c)$ and $Q_{_P}(c)$	270
VI.3 Construction of fractional size-frequency functions based on two dual	
Lotka laws	276
VI.3.1 Introduction	276
VI.3.2 A continuous attempt: $z \in \mathbb{R}^+$	278
VI.3.3 A rational attempt: $q \in \mathbb{Q}^+$	282
Chapter VII Further Applications in Lotkaian Informetrics	295
VII.1 Introduction	295
VII.2 Explaining "regularities"	297
VII.2.1 The arcs at the end of a Leimkuhler curve	297
VII.2.2 A "type/token-identity" of Chen and Leimkuhler	298
VII.3 Probabilistic explanation of the relationship between citation age and journal productivity	300

VII.4 General and Lotkaian theory of the distribution of author ranks	
in multi-authored papers	304
VII.4.1 General theory	304
VII.4.2 Modelling the author rank distribution using seeds	308
VII.4.3 Finding a seed based on alphabetical ranking of authors	310
VII.5 The first-citation distribution in Lotkaian informetrics	313
VII.5.1 Introduction	313
VII.5.2 Derivation of the model	317
VII.5.3 Testing of the model	320
VII.5.3.1 First example: Motylev (1981) data	320
VII.5.3.2 Second example: JACS to JACS data of Rousseau	322
VII.5.4 Extensions of the first-citation model	323
VII.6 Zipfian theory of N-grams and of N-word phrases: the Cartesian	
product of IPPs	326
VII.6.1 N-grams and N-word phrases	326
VII.6.2 Extension of the argument of Mandelbrot to 2-word phrases	329
VII.6.3 The rank-frequency function of N-grams and N-word phrases based	
on Zipf's law for $N = 1$	333
VII.6.4 The size-frequency function of N-grams and N-word phrases derived	
from Subsection VII.6.3	347
VII.6.5 Type/Token averages $\mu_N^{}$ and Type/Token-Taken averages $\mu_N^{}$	
for N-grams and N-word phrases	352
Appendix	365
Appendix I	365
Appendix II	370

Appendix III Statistical determination of the parameters in the	
law of Lotka	372
A.III.1 Statement of the problem	372
A.III.2 The problem of incomplete data (samples) and Lotkaian informetrics	373
A.III.3 The difference between the continuous Lotka function and the discrete	
Lotka function	378
A.III.4 Statistical determination of the parameters K,a,n_{max} in the discrete Lotka	
function K/n^a , $n = 1,,n_{max}$	386
A.III.4.1 Quick and Dirty methods	387
A.III.4.2 Linear Least Squares method	388
A.III.4.3 Maximum Likelihood Estimating method	390
A.III.5 General remarks	393
A.III.5.1 Fitting Zipf's function	393
A.III.5.2 The estimation of ρ_m and n_{max}	394
A.III.5.3 Fitting derived functions such as Price's law	394
A.III.5.4 Goodness-of-fit tests	395
Bibliography	
Subject Index	

INTRODUCTION

The most facinating aspect of informetrics is the study of what we could call two-dimensional informetrics. In this discipline one considers sources (e.g. journals, authors, ...) and items (being produced by a source - e.g. articles) and their interrelations. By this we mean the description of the link that exists between sources and items. Without the description of this link we would have two times a one dimensional informetrics study, one for the sources and one for the items. Essentially in two-dimensional informetrics the link between sources and items is described by two possible functions: a size-frequency function f and a rank-frequency function g. Although one function can be derived from the other, they are different descriptions of two-dimensionality. A size-frequency function f describes the number f(n) of sources with n = 1, 2, 3, ... items while a rank-frequency function g describes the number g(r) of items in the source on rank r = 1, 2, 3, ... (where the sources are ranked in decreasing order of the number of items they contain (or produce)). So, in essence, in f and g, the role of sources and items are interchanged. This is called duality, hence f and g can be considered as dual functions.

Rank-frequency functions are well-known in the literature, especially in the economics and linguistics literature, where one usually considers Pareto's law and Zipf's law, respectively, being power laws. Less encountered in the literature (except in information sciences) is the size-frequency function. If studied, one supposes in most cases also a power law for such a function, i.e. a function of the type $f(n)=C/n^{\alpha}$ with $\alpha \geq 0$. Such a function is then called the law of Lotka referring to its introduction in the informetrics literature in 1926, see Lotka (1926). The law of Lotka gives rise to a variety of derived results in informetrics, the description of them being the subject of this book. That we choose a size-frequency function as the main study-object is explained e.g. by its simplicity in formulation (in the discrete setting simpler than a rank-frequency function since the latter uses ranks which have been derived from the "sizes" n but also in the continuous setting, where sizes and ranks are taken in an interval, the formulation of the size-frequency function is more appealing and direct). A size-frequency function also allows for a study of fractional quantities (see Chapter VI), needed e.g. in the description of two-dimensional informetrics in which