Physikalische Ghemie

Physikalische Chemie

Physikalische Chemie Band 1

von

Prof. em. Dr.-Ing. habil., Dr. rer. nat. h. c. Kurt Schwabe Meinsberg

Mit 229 Abbildungen und 90 Tabellen

V07881

AKADEMIE-VERLAG · BERLIN

1975

2., unveränderte Auflage
Erschienen im Akademie-Verlag, 108 Berlin, Leipziger Straße 3−4

② Akademie-Verlag, Berlin, 1975
Lizenznummer: 202 · 100/547/75
Gesamtherstellung: VEB Druckerei "Thomas Müntzer", 582 Bad Langensalza EDV-Nummer: 762 153 3 (5656/1) · LSV 1214
Printed in GDR
EVP: 60, —

Kurt Schwabe Physikalische Chemie

Physikalische Chemie

Band 1: Physikalische Chemie

Band 2: Elektrochemie

Band 3: Aufgabensammlung

Das vorliegende Buch ist aus einer Vorlesung "Physikalische Chemie", die der Verfasser seit 1949 an der Technischen Hochschule Dresden, seit 1961 Technische Universität Dresden, für Chemiker und Verfahrenstechniker gehalten hat, und aus den Lehrbriefen für die Fernstudenten dieser Fachrichtungen hervorgegangen. Obwohl die Elektrochemie ein Teilgebiet der physikalischen Chemie darstellt, wurde entsprechend ihrer Bedeutung, die die Elektrochemie an der TH Dresden durch das Wirken von Fritz Foerster und Erich Müller erlangt hat, eine getrennte Vorlesung "Elektrochemie" abgehalten. Daher wird auch dieses Teilgebiet in einem besonderen Band behandelt, wobei aber die thermodynamischen und kinetischen Grundlagen der physikalischen Chemie vorausgesetzt werden.

Über die Frage, ob heute die physikalische Chemie noch als selbständige Lehrdisziplin behandelt werden kann oder ob nicht die gesamte Chemie immer mehr auf die physikalischen Grundlagen zu orientieren ist, so daß anorganische, organische, Biochemie usw. Spezialisierungsrichtungen einer auf physikalischen Grundlagen aufgebauten Chemie (allgemeinen Chemie) darstellen, ist viel diskutiert worden. Eine einheitliche Auffassung existiert offenbar weder international noch in der DDR. Vielfach wird eine elementare physikalische Chemie als allgemeine Chemie (general chemistry) bezeichnet, eine scharfe Abgrenzung läßt sich so natürlich kaum vornehmen. Da der Verfasser grundsätzlich die Verwendung neuer Bezeichnungen für Gebiete und Sachverhalte, die bisher mit geläufigen Namen versehen waren, für unzweckmäßig und eventuell irreführend ansieht, wurde der Titel "Physikalische Chemie" gewählt, obwohl das vorliegende Buch nur die Grundlagen der physikalischen Chemie vermitteln kann und für das Studium von wichtigen Teilgebieten auf spezielle Lehrbücher und Monographien in einem Anhang verwiesen werden mußte.

Da sich das Buch in erster Linie an Studierende der Chemie und der Verfahrenstechnik wendet, die später einmal ihre Kenntnisse der physikalischen Chemie in der chemischen und verwandten Industrien anwenden sollen, sind die Gebiete, deren Kenntnis für eine solche Tätigkeit wesentlich erscheint (z. B. physikalischchemische Eigenschaften der Stoffe, chemische Thermodynamik) relativ ausführlich behandelt, während die theoretischen Grundlagen der chemischen Bindung, der Molekülstruktur usw. nur sehr elementar dargestellt sind. Von physikalischen Meßmethoden und -verfahren sind im allgemeinen nur die theoretischen Grundlagen angedeutet, sie sind aber nicht näher beschrieben, weil sonst der Umfang des Buches zu stark angeschwollen wäre, das gilt insbesondere für die modernen Methoden zur Untersuchung der Molekülstruktur. Darüber hinaus sind natürlich,

wie bei jedem Lehrbuch, die einzelnen Kapitel entsprechend dem Interessengebiet des Autors verschieden ausführlich.

Zum Verständnis der physikalischen Chemie trägt es ganz wesentlich bei, wenn der Studierende ihre Gesetze auf entsprechende Aufgaben und Beispiele selbst anwendet. Deshalb sind in einem gesonderten kleinen Band "Physikalischemische Rechenaufgaben" zusammengestellt und entsprechend der Stoffeinteilung des vorliegenden Buches gegliedert, eine Beilage enthält die Lösungen der Aufgaben.

Die Symbole für die verwendeten Größen und ihre Einheiten wurden im allgemeinen nach den IUPAC-Empfehlungen gewählt. Wenn dort Alternativvorschläge gemacht wurden, haben wir das Symbol verwendet, das nach unserer Kenntnis in der Literatur noch am häufigsten zu finden ist. Nur wenn die IUPAC-Vorschläge von der allgemein üblichen Symbolik abweichen und bisher kaum verwendet wurden, haben wir uns nicht danach orientiert; z. B. konnten wir uns nicht entschließen, bei der Temperatur auf die Bezeichnung °K zu verzichten und entsprechend der IUPAC-Empfehlung nur K zu schreiben.

Für Hinweise auf Fehler und Vorschläge zur Verbesserung der Darstellung ist

der Verfasser jederzeit dankbar.

Er dankt seinen Mitarbeitern, insbesondere Frau Dipl.-Chem. Giese, Herrn Dozenten Dr. Kammer, Herrn Dozenten Dr. Suschke, Herrn Dr. Steyer und Herrn Dipl.-Phys. Thomsch für die vielseitige Unterstützung bei der Anfertigung des Manuskripts. Sein Dank gilt auch Herrn Dipl.-Phys. Scheller für die Kontrolle der Lösungen von etwa 550 Aufgaben im Band 3 für die Kapitel des 1. und 2. Bandes. Dem Akademie-Verlag ist er für die außerordentliche Geduld, die er bis zur Fertigstellung des Manuskripts aufgebracht hat, sowie für das verständnisvolle Eingehen auf verschiedene Wünsche und die Ausstattung des Buches zu großem Dank verpflichtet.

Dresden, im Sommer 1971

K. Schwabe

Aufgabengebiet und Arbeitsweise

Die physikalische Chemie nimmt — wie ihr Name sagt — eine Mittelstellung zwischen Chemie und Physik ein. Während sich die Physik bekanntlich mit Energieumwandlungen beschäftigt, werden in der Chemie die Umwandlungen der Stoffe erforscht. Eine scharfe Trennung der Naturerscheinungen nach diesen Gesichtspunkten ist natürlich nicht möglich, denn bei vielen Vorgängen treten gleichzeitig Stoff- und Energieumwandlungen auf. Gerade die Wechselwirkungen zwischen solchen Veränderungen stofflicher und energetischer Art sind aber der Hauptgegenstand der physikalischen Chemie.

Es gibt prinzipiell zwei Möglichkeiten, den Stoff der physikalischen Chemie zu

behandeln:

Einmal kann das Gebiet von einem mehr physikalischen Standpunkt aus betrachtet werden, das ist die Verfahrensweise der chemischen Physik (EUCKEN,

GLASSTONE):

Alle materiellen Umwandlungen sind eine Folge der Energien, die zwischen den Bausteinen der Materie (den Molekülen, Atomen, Elektronen usw.) wirken. Bei genauer Kenntnis der Elementarbausteine der Materie und der Energieverhältnisse müßten sich im Prinzip auch die Eigenschaften und Umwandlungen der sichtbaren Materie (Flüssigkeiten, Kristalle usw.) bestimmen lassen. Bei dieser Betrachtungsweise müßte man von den Elementarbausteinen der Materie ausgehen und daraus immer größere Teilchen aufbauen, bis man schließlich zu makroskopischen Gebilden gelangt. Die physikalisch-chemischen Eigenschaften dieser Gebilde müßten sich dann aus den Eigenschaften der Elementarbausteine unter Berücksichtigung der Baustruktur ableiten lassen. Danach könnte man z. B. aus den Eigenschaften der Neutronen, Protonen und Elektronen, ihrer Zahl und der Art ihrer Verkoppelung die Eigenschaften eines C-Atoms und schließlich die des Graphitkristalls bestimmen.

Tatsächlich reichen aber unsere heutigen physikalischen Kenntnisse nur in

wenigen einfachen Fällen aus, um eine solche Betrachtung vorzunehmen.

Außerdem erfordert die exakte Beschreibung der Eigenschaften der Elementarbausteine und erst recht der Kräfte, die sie aneinander binden, einen großen mathematischen Aufwand und ein erhebliches Maß an Abstraktionsvermögen.

Demgegenüber steht eine zweite Verfahrensweise, die von den makroskopischen Erscheinungsformen der Materie ausgeht, ihre Veränderungen im Zusammenhang mit Energieänderungen (Wärmezufuhr usw.) betrachtet und schneller zu Erkenntnissen führt, die für die Praxis des Chemikers von großem Wert sind. Das ist die Verfahrensweise der sog. klassischen physikalischen Chemie, weil hierbei die chemische Betrachtungsweise im Vordergrund steht. Sie ist von W. Ost-

WALD (1853-1932) angewendet worden; er wird als der Begründer der physi-

kalischen Chemie angesehen1).

Wir werden im folgenden aus den oben genannten Gründen diese Betrachtungsweise wählen. Das schließt nicht aus, daß wir bei der Untersuchung der makroskopischen Eigenschaften der Materie häufig ihren Aufbau aus Korpuskeln zur Erklärung mit heranziehen und auf die Eigenschaften dieser Korpuskeln kurz eingehen.

Der in diesem Band behandelte Stoff gliedert sich in drei große Abschnitte.

Im ersten,

I. Die stofflichen Zustände der Materie,

werden die allgemeinen Eigenschaften der Stoffe in den drei Aggregatzuständen, insbesondere das Volumen als Funktion von Druck und Temperatur (thermische Zustandsgleichung) dargestellt. Zum Verständnis des makroskopischen Verhaltens werden die Atom- und Molekülstruktur und die zwischenmolekulare Wechselwirkung in den Aggregatzuständen erklärt.

Im zweiten Abschnitt,

II. Chemische Energetik und Gleichgewichtslehre,

werden auf der Grundlage der Hauptsätze der Wärmelehre die bei stofflichen Veränderungen auftretenden Energiebeträge behandelt und die Phasengleichgewichte sowie das chemische Gleichgewicht besprochen. Neben den Methoden der klassischen Thermodynamik²) werden auch die der statistischen Thermodynamik kurz erläutert. Die Wege zur Berechnung der Gleichgewichtskonstanten aus thermodynamischen Größen werden angegeben.

Der dritte Abschnitt,

III. Kinetik,

befaßt sich mit den Erscheinungen, bei denen Geschwindigkeiten als charakteristische Eigenschaften auftreten, während die beiden ersten Kapitel nur zeitinvariante Zustände beschreiben. So werden die Viskosität, die Diffusion, die Kinetik der Phasenumwandlung und vor allem die chemische Kinetik besprochen. Wegen der allgemeinen Bedeutung der Gesetze der "Thermodynamik irreversibler Prozesse" für all diese Phänomene werden auch ihre Grundlagen kurz dargestellt.

Wegen des Zusammenhangs zwischen chemischer Kinetik und photochemischen sowie strahlenchemischen Prozessen sind zwei Kapitel Photochemie und Radio-

chemie angefügt.

Der Aufbau der Materie ist demnach nur insoweit behandelt, wie er zum Verständnis des makroskopischen Verhaltens der Stoffe erforderlich ist. Wer sich speziell dafür interessiert, findet ausführliche Darstellungen über dieses und andere Spezialgebiete in den im Anhang genannten Büchern und Monographien.

2) Treffender vielleicht als "Thermostatik" bezeichnet (vgl. dazu Teil III).

¹⁾ Bezeichnend für Ostwalds Auffassung über die physikalische Chemie ist übrigens, daß er die Atomtheorie lange Zeit als unbeweisbar und unwesentlich abgelehnt hat.

Verzeichnis der verwendeten Symbole

$Teil\ I$

A, aArbeit1) maximale Arbeit A_m MADELUNGsche Konstante A Bohrscher Radius a_0 Konstanten der Van-der-Waalsschen Gleichung a, bMolwärme, Wärmekapazität bei konstantem Druck¹) C_p, c_p Molwärme, Wärmekapazität bei konstantem Volumen¹) C_v, c_v Geschwindigkeit cC Lichtgeschwindigkeit mittlere Geschwindigkeit \bar{c} $\overline{c^2}$ mittleres Geschwindigkeitsquadrat Litermolarität C_B Diffusionsgeschwindigkeit CDiff. häufigste Geschwindigkeit C_h Direktionskonstante D DDiffusionskoeffizient d. Netzebenenabstand E Energie E_k kinetische Energie \overline{E}_k mittlere kinetische Energie eines Moleküls elektrische Elementarladung e_0 H, hEnthalpie¹) h Höhe h Plancksches Wirkungsquantum JTrägheitsmoment JImpuls j Rotationsquantenzahl K Kraftkonstante K_K kritischer Koeffizient Boltzmannsche Konstante 1 Nebenquantenzahl 1 Länge

Molmasse

M

¹⁾ Vgl. Fußnote S. XVIII

² Schwabe

XVIII Verzeichnis der verwendeten Symbole

M; .	Molmasse des Stoffes i
M_s	mittlere Molmasse
m	Masse
m_B	Kilomolarität
m_e	Masse des Elektrons
m_i	Masse des Stoffes i
m_{l}	Magnetquantenzahl
m_s	Spinquantenzahl
N	Teilchenzahl
iN	Teilchenzahl pro Volumeneinheit
$N_{\rm o}$	Loschmidtsche Zahl
N_E	Anzahl der Teilchen mit der Energie E
n	Molzahl
n	Hauptquantenzahl
n_i	Anzahl der Mole des Stoffes i
n_S	Schwingungsquantenzahl
R	Kraft
p	Druck
	Partialdruck der Komponente i
p_i	kritischer Druck
Q, q	Wärmemenge¹)
	Gewichtsverhältnis
$\frac{q_B}{R}$	Gaskonstante
R_H	Rydberg-Konstante
R(r)	Radialverteilungsfunktion
r	Teilchenabstand
	Normalabstand
r ₀	Molekülradius
r _M	
S, s T	Entropie ¹)
T_B	absolute Temperatur
T_{sl}	BOYLE-Temperatur
T_k^{sl}	Schmelztemperatur kritische Temperatur
T_{lg}^{k}	
t	Siedetemperatur Zeit
U, u	
	innere Energie ¹)
V, v	Volumen¹)
Vo	Molvolumen idealer Gase
$\frac{V}{V}$	kritisches Molvolumen
\overline{V}_i	partielles molares Volumen des Stoffes i ²)
v_{M}	Volumen der Komponente k
v_k	Volumen der Komponente k
v_s	spezifisches Volumen
v_s	Gesamtvolumen einer Mischung

1) Molare Größen werden mit großen Buchstaben bezeichnet.

²) Partielle molare Größen werden durch einen Querstrich über dem entsprechenden großen Buchstaben gekennzeichnet.

W Wahrscheinlichkeit Molenbruch der Komponente i x_i Geschwindigkeitskomponenten $\dot{x}, \dot{y}, \dot{z}$ Z Kernladungszahl Kompressibilitätsfaktor = $\frac{p \cdot V}{RT}$ $\overline{\overline{z}}$ Solvatationszahl 2 Ionenladungszahl 2+, 2-Polarisierbarkeit oc kubischer Ausdehnungskoeffizient OF linearer Ausdehnungskoeffizient ou Winkel einer Elementarzelle Dielektrizitätskonstante 3 Energie eines Quants 3 Feldstärke E thermodynamischer Wirkungsgrad n 0 Einfallswinkel (Braggsche Reflexionsmethode) 8 Celsiustemperatur 2 Wellenlänge reduzierte Masse μ Dipolmoment μ Frequenz v ũ Wellenzahl osmotischer Druck π reduzierter Druck p/p_k TE IIKohäsionsdruck Dichte 0 kritische Dichte Qk Dichte der Mischung ϱ_m Relaxationszeit reduzierte Temperatur T/T_k τ scheinbares Molvolumen der Komponente i ΦV_i reduziertes Volumen V/Vk φ Kompressibilitätskoeffizient X

Teil II

ψ

03

Wellenfunktion

Winkelgeschwindigkeit

 E_{lg} molare Siedepunktserhöhung (ebullioskopische Konstante) E_{sl} molare Gefrierpunktserniedrigung (kryoskopische Konstante)

¹⁾ vergl. Fußnote S. XVIII.

XX Verzeichnis der verwendeten Symbole

elIndex für Elektronenanregungsanteil

freie Energie¹)

f Anzahl der Freiheitsgrade

 f_c praktischer Aktivitätskoeffizient für Litermolaritäten praktischer Aktivitätskoeffizient für Kilomolaritäten f_m

 f_x rationaler Aktivitätskoeffizient

G, gfreie Enthalpie¹)

rationaler osmotischer Koeffizient gIndex für den gasförmigen Zustand g

statistisches Gewicht

 $\frac{g_i}{\bar{I}_i}$ relative partielle molare Enthalpie

 K_a Gleichgewichtskonstante bezogen auf Aktivität K_c Gleichgewichtskonstante bezogen auf Litermolarität K_m Gleichgewichtskonstante bezogen auf Kilomolarität K_p Gleichgewichtskonstante bezogen auf Partialdruck K_x Gleichgewichtskonstante bezogen auf Molenbruch

k Henryscher Lösungskoeffizient

 k_0 Temperaturkoeffizient der molaren Oberflächenspannung

 K_N Nernstscher Verteilungskoeffizient 1 Index für den flüssigen Zustand L_i , l_i integrale Lösungswärme¹)

Index für maximal m Zahl der Mikrozustände m

 N_0 Anzahl der Moleküle im Grundzustand N_i Anzahl der Moleküle mit der Energie i Index unten bei Größe für T = 0 K Index oben für Standardgröße

 P_{ch} Parachor

negativer dekadischer Logarithmus der Gleichgewichtskonstante p_K

 p^* Fugazität

 \overline{Q} Verteilungsfunktion

 $ar{ar{Q}}_{ad}$ partielle molare Adsorptionswärme Q_i partielle molare Mischungswärme Q_{lg} molare Verdampfungswärme molare Sublimationswärme Q_{sa} Q_{sl} molare Schmelzwärme

spezifische Verdampfungswärme q_{la}^s spezifische Schmelzwärme q_{sl}^s

RIndex für Rotationsanteil revIndex für reversibel

S Index für Schwingungsanteil

S Oberfläche

8 Index für festen Zustand

 T_0 Normaltemperatur 298,16°K (25°C) Tr

Index für Translationsanteil T_{lq} Siedetemperatur

¹⁾ Vgl. Fußnote S. XVIII

 T_{sl} Schmelztemperatur

u Zahl der Atome eines Moleküls

 W_{Ad} Adhäsionsarbeit W_K Kohäsionsarbeit

 W_p molare Reaktionswärme bei konstantem Druck W_p molare Reaktionswärme bei konstantem Volumen

 $W^0_{pf_{T_{AB}}} \equiv H^0_{f_{T_{AB}}}$ Standardbildungsenthalpie der Verbindung $A\,B$ bei der Tem-

peratur T

x, y, z Indizes für Raumrichtungen

z Anzahl der Zellen ε_i Energieüberschuß

Θ charakteristische Temperatur
 ϑ Rand- oder Benetzungswinkel

 μ differentieller Joule-Thomson-Koeffizient chemisches Potential der Komponente i

 σ Symmetriezahl

 σ Oberflächenspannung

 $\overline{\sigma}_i$ partielle molare Oberflächenspannung des Stoffes i

Φ molarer osmotischer Koeffizient

 φ Fugazitätskoeffizient

Teil III

 c_{AK} Konzentration des Zwischenstoffes

c_i Konzentration des Stoffes i

 c_i Konzentration des Stoffes i vor der Reaktion

 c_K Katalysatorkonzentration E_A Aktivierungsenergie H magnetische Feldstärke H^* Aktivierungsenthalpie

 $egin{array}{lll} I & {
m Lichtintensität} \ i & {
m Stromstärke} \ J_D & {
m Teilchenstrom} \ J_i & {
m allgemeiner} {
m Strom} \ K & {
m Katalysenkonstante} \ K & {
m Gleichgewichtskonsta} \ \end{array}$

K Gleichgewichtskonstante
k Geschwindigkeitskonstante
Extinktionskoeffizienten

 k_n Geschwindigkeitskonstante einer Reaktion n-ter Ordnung (n = 0, 1, 2, ...)

 k_{-n} Geschwindigkeitskonstante einer Rückreaktion n-ter Ordnung (n = 0, 1, 2, ...)

 k_r Geschwindigkeitskonstante einer katalysierten Reaktion

 k_u Geschwindigkeitskonstante einer unkatalysierten Reaktion phänomenologischer Koeffizient

q Trennfaktor q Querschnitt

q Querschnitt R_D Diffusionswiderstand

r Reaktionsgeschwindigkeit

XXII Verzeichnis der verwendeten Symbole

σ χ_{M} Einfangquerschnitt

molare Suszeptibilität

r	Teilchenradius
S	Oberfläche
S*	Aktivierungsentropie
8	Sedimentationskoeffizient
u	Strömungsgeschwindigkeit
v	Reaktionsgeschwindigkeit
v_K	Reaktionsgeschwindigkeit einer katalysierten Reaktion
X_{i}	allgemeine Kraft der Sorte i
x	umgesetzte Menge
8	Dialra dan Diffusianagahiaht
3	molarer Extinktionskoeffizient
$\varepsilon_{ m phot}$	Energie eines Photons
η	Viskositätskoeffizient
Θ	Herstellungstemperatur eines Kontaktes
2	Dialysenkoeffizient
T1/2	Halbwertszeit
Φ	Dissipationsfunktion
Φ	Quantenausbeute
9	elektrisches Potential
q	Drehwinkel
α	Jahr
d	Tag
E_b	Bindungsanteil der Elektronen
f	Kraftkonstante
I_d	Strahlungsintensität nach Durchstrahlung einer Schicht der Dicke d
I_0	Intensität der ungeschwächten Strahlung
M_m	magnetisches Moment pro ml
n	Neutron
p	Proton
α	radioaktive Strahlung bestehend aus Heliumkernen
β	radioaktive Strahlung bestehend aus Elektronen
8	radioaktive Strahlung bestehend aus elektromagnetischen Wellen
μ_n	permanentes magnetisches Moment
	Ta: 6 1 '11

Inhalt

	Einleitung	XV
	Verzeichnis der verwendeten Symbole	XVII
	Teil I: Die stofflichen Zustände der Materie	1
	Abschnitt A: Reine Stoffe	1
1.	Allgemeine Grundlagen und Definitionen	1
1.1.	Zähl- und Meßgrößen	1
1.2.	Zustandsgrößen	2
1.3.	Die thermische Zustandsgleichung	2
2.	Ideale Gase, empirische Betrachtung	-6
2.1.	BOYLE-MARIOTTESches Gesetz	6
2.2.	Anwendung des Boyle-Mariotteschen Gesetzes	8
2.3.	GAY-LUSSACsches Gesetz	10
2.4.	Definition der idealen gasthermometrischen Temperaturskala	13
2.5.	Avogadroscher Satz	15
2.6.	Allgemeine Zustandsgleichung der idealen Gase	17
2.7.	Zahlenwert der Gaskonstanten	18
2.8.	Bestimmung der Molmasse	19
3.	Ideale Gase, kinetische Betrachtung	22
3.1.	Voraussetzungen für die Aufstellung einer kinetischen Theorie	22
3.2.	Quantitative Schlußfolgerungen	24
3.3.	Molekülgeschwindigkeit	28
3.4.	Mittlere freie Weglänge	32
3.5.	Regellose Geschwindigkeitsverteilung	34
4.	Reale Gase und Flüssigkeiten, empirische Betrachtung	43
4.1.	Abweichungen vom BOYLE-MARIOTTESchen Gesetz	43
4.2.	VAN DER WAALSsche Gleichung	45
4.3.	Analyse und physikalische Deutung der van der Waalsschen Gleichung	47
4.4.	Kritigehe Deten	49
4.5.	Kritische Daten	40
z.o.	kritischen Daten	51
4.6.	Andere Zustandsgleichungen	54
1.7.	Reduzierte Zustandsgleichungen und das Theorem der überein-	U.S.
201	stimmenden Zustände	55

VIII Inhalt

5.1. 5.2. 5.3. 5.4.	Reale Gase und Flüssigkeiten, kinetische Betrachtung Kohäsionsdruck	60 62 64 67
6. 6.1. 6.2. 6.3. 6.4. 6.5. 6.6.	Der feste Zustand	72 72 73 76 79 81
7. 7.1. 7.2. 7.3. 7.4. 7.5. 7.6.	Atom- und Molekülstruktur Einführung Wasserstoff und wasserstoffähnliche Atome Elektronenenergie und chemische Bindung Ionenbindung Kovalente Bindung LCAO-Methode	86 86 94 106 106 109 111
7.7. 7.8. 7.9. 7.10. 7.11. 7.12. 7.13. 7.14. 7.14.1. 7.14.2.	Zwischenmolekulare Bindungen	114 116 120 124 126 127 128 130 131
8. 8.1. 8.2. 8.3. 8.4. 8.5. 8.6.	Kovalente Gitter	136 137 138 140
8.7. 8.8. 8.9. 8.10.	Gitterstörungen Kristallsysteme MILLERsche Indizes Erzeugung von Röntgenstrahlen Kristallstrukturuntersuchungen mit Hilfe der Braggschen Reflexionsmethode Anwendung der Braggschen Methode zur Untersuchung kubi-	143 147 148 149 150
8.12.	scher Gitter	158160
9. 9.1. 9.2.	Gasmischungen	160