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PREFACE

In the not so distant past, the sciences of biology, chemistry, and
physics were seen as more or less separate disciplines. Within the last
half-century, however, the lines between the sciences have become
blurred, to the benefit of each. Somewhat more recently, the methods
of mathematics and computer science have emerged as necessary tools
to model biological phenomena, understand patterns, and crunch
huge amounts of data such as those generated by the human genome
project. Today, virtually any advance in the life sciences requires a
sophisticated mathematical approach. Characterization of biological
systems has reached an unparalleled level of detail, and modeling of
biological systems is evolving into an important partner of
experimental work. As a result, there is a rapidly increasing demand
for people with training in the field of biomathematics.

Training at the interface of mathematics and biology has been initiated
in a number of institutions, including Rutgers University, the
University of California at Los Angeles, North Carolina State
University, the University of Utah, and many others. In 2001, a
National Research Council panel found that ““‘undergraduate biology
education needs a more rigorous curriculum including thought
provoking lab exercises and independent research projects.” To
improve quantitative skills, faculty members should include more
concepts from mathematics and the physical sciences in biology
classes. Ideally, the report says, ““the entire curriculum would be
revamped.”' As the demand for academic programs that facilitate
interdisciplinary ways of thinking and problem solving grows, many
of the challenges for creating strong undergraduate programs in
mathematical biology have become apparent. The report Math & Bio
2010: Linking Undergraduate Disciplines summarizes the results of the
project Meeting the Challenges: Education Across the Biological,
Mathematical, and Computer Sciences” and emphasizes that
interdisciplinary programs should begin as early as the first year of
college education, if not in high school. In one of the articles, an
editorial reprinted from the journal Science and used in the report, the
author Louis Gross specifically underscores the importance of finding
ways to “teach entry-level quantitative courses that entice life science
students through meaningful applications of diverse mathematics to
biology, not just calculus, with a few simple biological examples.’”

The book that you are about to read, our An Invitation to
Biomathematics, was conceived and written with this exact goal in
mind. This book is meant to provide a glimpse into the diverse world
of mathematical biology and to invite you to experience, through a
selection of topics and projects, the fascinating advancements made
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possible by the union of biology, mathematics, and computer science.
The laboratory manual component of the text provides venues for
hands-on exploration of the ever-present cycle of model development,
model validation, and model refinement that is inherent in
contemporary biomedical research. The textbook aims to provide
exposure to some classical concepts, as well as new and ongoing
research, and is not meant to be encyclopedic. We have tried to keep this
volume relatively small, as we see this text used as a first reading in
biomathematics, or as a textbook for a one-semester introductory course
in mathematical biology. It is our hope that after reading this Invitation
you will be inspired to embark on a more structured biomathematical
journey. We suggest considering a classical textbook, such as Murray’s
Mathematical Biology, to gain a systematic introduction to the field in
general. We also encourage you to delve deeper into some of the more
specialized topics that we have introduced, or to take additional courses
in mathematical biology.

The textbook is divided into two parts. In Part I, we present some
classical problems, such as population growth, predator-prey
interactions, epidemic models, and population genetics. While these
have been examined in many places, our main purpose is to introduce
some core concepts and ideas in order to apply them to topics of modern
research presented in Part 1. Because we also felt that these topics are
likely to be covered in any entry-level course in mathematical biology,
we hope that this organization will appeal to college and university
faculty teaching such courses. A possible scenario for a one-semester
course will be to cover all topics from Part I with a choice of selected
topics from Part II that is, essentially, modular in nature. The diagram in
Figure 1 outlines the chapter connectivity. Table 1 presents brief chapter
descriptions by biological and mathematical affiliation.

A committed reader who has had the equivalent of one semester-long
course in each of the disciplines of calculus, general biology, and
statistics should be able to follow Chapters 1 to 10. With these
prerequisites, we believe that the book can be read, understood, and
appreciated by a wide audience of readers. Although Chapters 11 and 12
also comply with those general prerequisites, a quality understanding of
the fundamental concepts covered there may require a somewhat higher
level of general academic maturity and motivation. Thus, although
Chapters 11 and 12 can be considered optional in essence, we would like
to encourage the readers to explore them to the extent and level of detail
determined by their individual comfort level.

Our rule while writing this book was that the biology problem should
lead the mathematics, and that we only present the mathematics on a
need-to-know basis and in the amount and level of rigor necessary.
As a consequence, very few mathematical theorems are proved or
even discussed in the text. We limited ourselves to the minimal
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mathematical terminology necessary for understanding, formulating,
and solving the problem, relying on the reader’s intuition for the rest.
We felt that in the interest of showing how the tools of mathematics and
biology can blend together and work as one when needed, we should
resist the urge for possible generalizations (an urge that is almost second
nature for those of us trained in the field of theoretical mathematics).
The choice not to explore many of the possible exciting mathematical
venues that stem from some of the topics and projects was deliberate,
and we apologize to those readers who wish we had included them.

We would like to thank all of our students at Sweet Briar College and the
University of Virginia, especially Jennifer McDonaugh, Jamie Jensen,
and Suzanne Harvey, for providing valuable comments and opinion
throughout the development and classroom testing of the textbook and
laboratory manual manuscripts. We also thank our colleagues Drs. Marc
Breton, Jeff Graham, Stan Grove, David Housman, Eric Marland, Pamela
Ryan, Philip Ryan, Karen Ricciardi, and Bonnie Schulman for their
feedback on selected chapters and/or laboratory projects, and Anna
Kovatcheva for collecting the data used in Exercise 1 of Chapter 4. We
appreciate the help of Dr. Stefan Robev and of Ryan King, who carefully
proofread the entire first draft of the manuscript, and of Jane Carlson,
who assisted with its early technical editing. We are also indebted to all
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Chapter Biological topics Biological subtopics Mathematical topics

1 Ecology, Population growth, harvesting Discrete and continuous dynamical systems,
Conservation model, drug dosage model difference equations, differential equations
Biology,
Toxicology
2 Ecology, Epidemic model, predator-prey Continuous dynamical systems
Microbiology, model, competition model
Epidemiology
3 Genetics Hardy-Weinberg law, genetic Discrete dynamical systems, probability
selection, polygenic histograms, Normal distribution, Central
inheritance Limit Theorem
+ Genetics, Heritability Probability distributions, statistics
Biostatistics
5 Physiology, Blood glucose levels, glucose Data transformation, risk function, statistics
Endocrinology homeostasis
6 Physiology, Development, bacterial Probability distributions, statistics,
Microbiology infections, cardiac function, approximate entropy
premature birth
7 Biochemistry, Hemoglobin function, Continuous dynamical systems, probability
Physiology, Cell cooperativity, conformational distributions
Biology change
8 Biochemistry, Ligand binding Numerical solutions of algebraic equations,
Physiology iterative computational strategies, time series
9 Endocrinology, Hormone pulsatility Periodic components, FFT, pulse-detection
Physiology, Cell algorithms
Biology
10 Endocrinology, Hormone networks Continuous dynamical systems with delays
Physiology, Cell
Biology
11 Physiology, Cell Circadian rhythms Confounded time series, rhythm analysis
Biology,
Molecular Biology
12 Physiology, Cell Gene chips, molecular biology of Data normalization, clustering strategies, time
Biology, circadian rhythms series, rhythm analysis
Molecular Biology
TABLE |.

Chapter topics by biological and mathematical affiliation

of our editors at Academic Press/Elsevier: Chuck Crumley, David Cella,
Kelly Sonnack, Nancy Maragioglio, Luna Han, and Sally Cheney, for
their encouragement and assistance throughout. Our deep gratitude
goes to Tom Loftus who put many hours into editing the final draft of
the manuscript for style and language consistency. Finally, we
appreciate the support of the National Science Foundation under the
Department of Undergraduate Education awards 0126740 and 0304930,
and the support of the National Institutes of Health under NIDDK
awards R25 DK064122, R01 DK51562, and R25 DK064122.
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You are now invited to turn the page and begin your exploration of
biomathematics.

The Authors
July 20, 2007
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Life belongs to the living, and he who lives must be prepared for
changes.
Johann Wolfgang von Goethe (1749—1832)

According to Encyclopadia Britannica, a mathematical model
is defined as “‘either a physical representation of
mathematical concepts or a mathematical representation
of reality.” Physical mathematical models, such as graphs
of curves or surfaces defined by analytic equations or
three-dimensional replicas of cylinders, pyramids, and
spheres, are used to visualize mathematical terms and
concepts. Such models present realistic depictions of
abstract mathematical definitions. In contrast, a
mathematical representation of reality uses mathematics
to describe a phenomenon of nature. There are many
mathematical tools that can be used in this process,
including statistics, calculus, probability, and differential
equations. Different methods may provide insights to
different aspects of the problem, and there is often much
debate about what approach is preferable. Mathematical
models that represent reality are the subject of this text.

Building a good mathematical model is a challenging task
that requires a solid understanding of the nature of the
system being modeled, as well as the mathematical tools
being used to describe it. Because mathematical models
are quite diverse, it is difficult to specify a process that
would apply to all problems. However, there are
fundamental principles that facilitate and guide the
creative process. They are:

1. Initially, a model should be simple.

2. It is crucial to test the model under as many condi-
tions as reasonable.

3. If the model seems to be successful in some ways but
fails in others, try to modify the model rather than
starting over.

In this chapter, we discuss how biological models of one
variable change over time. The first model we study is
growth of a population. Our initial attempt is based on
numerical data. Later, we build the model based on
conjectures about “how populations should grow.” Both
models yield essentially the same result, and although
these constructions are successful in the short term, both
are flawed because the long-term behavior they predict is
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unrealistic. We then look at the long-term growth of a yeast culture to
build a more believable model.

The first models we construct are of exponential growth. Later in the
chapter, we study related models describing exponential decrease in the
concentration of drugs in the bloodstream. These exponential growth/
decay models are derived from the hypothesis that the time rate of
change (i.e., the derivative with respect to time) of a quantity is
proportional to the amount present.

We begin with a problem popularized in the late eighteenth century by
Thomas Robert Malthus—the growth of human populations.

I. USING DATA TO FORMULATE A MODEL

Contemporary research is hypothesis-driven and is based on
experimental evidence. A properly designed experiment can corroborate
a hypothesis, prove it false, or produce inconclusive data. An experiment
can also suggest new hypotheses that, in turn, will need to be tested.
This leads to an ever-repeating cycle of collecting data, formulating
hypotheses, designing new experiments to attempt to corroborate them,
and collecting new data. It should be emphasized, however, that
ultimately the validity of a hypothesis can never be proved. Karl Popper
gives the following very instructive example: If somebody sees one, two,
or three white swans, he or she may hypothesize, “All swans are white.”
Each white swan seen corroborates the hypothesis but does not prove it,
because the first black swan would invalidate it completely. This
demonstrates the necessarily close interdependence between hypothesis
and experiment.

In this section, we explore the process of creating mathematical models
that describe the growth (or decline) in the size of populations of living
organisms. We would like to express the size as a mathematical function
of time. Although one model will not work for all species, there are
certain fundamental principles that apply almost universally. Our first
goal is to identify some of these principles and determine the best way to
express them mathematically. We begin by considering U.S. census data
for 1800-1860 (U.S. Census Bureau [1993]). Table 1-1 presents the figures
for the population of the United States over these 6 decades.

Examining the data plot is always a good idea, as it may suggest certain
relationships. Letting t = 0 be the year 1800 and one unit of time = 10
years, we present the data plot in Figure 1-1. Unfortunately, the
conventional plot of the data is not very illuminating. It is evident that
the growth is nonlinear, but it is not possible to determine the type of
nonlinear dependence by mere observation. There are many
mathematical functions that exhibit similar growth patterns. For
example, if P(t) represents the U.S. population as a function of the



Introduction to Dynamical Systems An Invitation to Biomathematics

Year U.S. Population (millions)
1800 5.3
1810 72
1820 9.6
1830 12.9
1840 17.1
1850 23.2
1860 31.4
TABLE I-1.

Population of the United States from 1800 to 1860.
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FIGURE 1-1.
Plot of U.S. population versus time. A graph of the data shown in Table |-1.

time f, the data points in Figure 1-1 may have come from sampling the
function P(t) = at’ or P(t) = at’, where a > 0 is a constant, or some other
power law. It may also be that the data follow an exponential law of
increase with the general form P(f) = ae” where a > 0 and b > 0 are
constants. To determine the specific nonlinear function that provides the
best fit for the data, we examine the change in U.S. population per decade;
that is, the rate of change. In our example, they appear to be growing with
time—the population change is 1.9 million from 1800 to 1810 but 8.2
million from 1850 to 1860 (more than four times as large). Thus, the rate of
population growth increases as the U.S. population increases.

These observations lead to two different ways of plotting the data: (1) The
change in population size per decade versus time, and (2) the change in
population size per decade versus population size at the beginning of
decade. While the graph in Figure 1-2(A) is still not very telling,

the one in Figure 1-2(B) is strikingly linear. Is this a mere coincidence, or are
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FIGURE [-2.
Comparison of rate of change versus time to rate of change versus population size. Panel A:
Population rate of change versus time; panel B: Population rate of change versus population size.

we on to something important? Observing the data prompts us to make
the following conjecture:

There is a linear dependence between the rate of change in population size and
the population size itself.

We now have a hypothesis. How should we proceed in order to
corroborate or reject it? In general, the process involves the following
major components, presented here in their natural order:

1. Solicit expert opinion. In this case, discuss the conjecture with pop-
ulation biologists. If they cannot dismiss the hypothesis right away
by providing examples that clearly contradict it, it merits further
investigation.



