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TO MY WIFE



PREFACE

This book was written to fill a need that has been evident to me
for some time. There are, of course, many elementary books on finite
mathematics available, some of them written specifically for the social
and management sciences; there is none, however, that includes all
the subjects in this book. These are subjects which should, in my
opinion, be included. There are, in effect, certain topics here that
are not found in other books at the level. Now, none of these requires
complicated mathematics. Rather, they seem to belong to the
“common-sense” school: they are applications to large problems of
methods that are automatically used for small problems, and this
because they are so obvious.

In general, I have tried to introduce the problem first, and have,
with this motivation, developed the mathematics. It is my hope that
the student will learn more easily in this manner. In some cases I
have discussed alternative, but impractical, methods (e.g., enumera-
tion of all extreme points) to show that common sense is not, in itself,
sufficient: some practical experience is usually necessary.

Let us look at the book in some slight detail. Chapter I covers
topics (systems of linear equations) that have almost certainly been
seen before; it takes advantage of them to introduce the more com-
plicated inequalities. Chapter II takes the topics of Chapter I and puts
them in the more formal setting of linear algebra. Chapter III uses
the results of the first two chapters, applying them to more practical
problems.

Chapter IV again deals with subjects that have probably been
seen before (sets and logic). These are then used to help in the
formalism of Chapter V, which is almost certainly the most difficult
one in the book.
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Chapter VI, which depends on both III and V, introduces the
reader to the important field of game theory. Chapter VII, which is
almost independent of the others, develops some new but important
methods. Finally, Chapter VIII is of importance in that it introduces
the reader to graphical methods. The Appendix includes, for refer-
ence, some subjects that have probably been seen by the reader.

The logical connection among the chapters can be seen in the
following table:
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in which a solid line means that the lower chapter requires reading
of the upper chapter, but a broken line means merely that knowledge
of the upper chapter is helpful.

It is a pleasure to express my gratitude to those who have helped
me in the writing of this book: to my wife, who has been most patient
and has encouraged me throughout; to Fordham University, which
contributed funds for the preparation of the manuscript; and finally,
to Mrs. Adrienne DiFranco, who did some excellent typing and
otherwise helped to prepare this manuscript.

G. O.
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CHAPTER |

ANALYTIC
GEOMETRY

1. THE CARTESIAN PLANE

Among the intellectual achievements of the Greeks, their mathe-
matics, and especially their geometry, must be given a place of honor.
Thales, Pythagoras, Apollonius, Archimedes—to name but a few—
have lent their names to important geometric ideas, while Euclid’s
Elements remains one of the fundamental works of classical antiquity.

Yet for all their excellence in geometry, the Greeks often found
themselves bafled by problems that could be solved today by a
schoolboy. The trouble lay, not in a lack of ingenuity, but rather in the
fact that the ancients lacked one of the fundamental tools of modern
mathematics.

It remained to René Descartes (1596-1650) to discover this tool.
Descartes is primarily known for his philosophic works —the Dis-
course on Method and the Meditations on Prime Philosophy. While
no one can deny the extent of his influence on modern philosophy,
we would yet venture to say that his mathematical work will prove
the more important and enduring.

Descartes’ great discovery can best be appreciated if we consider
the differences between the two mathematical sciences of geometry
and algebra. Geometry deals with the relations between points and
lines, while algebra deals with numbers. It is generally easy, when
dealing with numbers, to decide what should be done with them;
because this is not true of points and lines, algebraic problems have
always been easier to solve than geometric problems. Descartes’
discovery was, precisely, that it is generally possible to solve geo-
metric problems by algebraic means. He showed that the set of all
points on a line has a structure identical to that of the set of real
numbers. 1
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FIGURE 1.1.1 The Cartesian line.

Consider, for example, a line (Figure 1.1.1). On this line, two
points may be taken arbitrarily (the only condition being that they be
distinct points), and labeled O and I, respectively. If X is any other
point on the line, we associate with X the number

1.1.1 x=

QS

which is the ratio of the lengths of the two line-segments, OX and OI,
with the stipulation that this ratio will be positive if X lies on the same
side of O as I (so that OX and OI have the same direction), while it
will be negative if X and I lie on opposite sides of O (so that
OX and OI have opposite directions). The number x is called the
coordinate of the point X. It is easy to see that the coordinate, x, is
merely the distance OX, measured in units of size OI, so that the
point O, called the origin, will have coordinate 0, while the point I
will have coordinate 1.

We see, then, that each point on the line can be assigned a
number, its coordinate. Conversely, given any positive number x,
there are two points X and X’ whose distance from the origin is equal
to x units. One of these is on the same side of the origin as I and
corresponds to x; the other is on the other side of the origin and will
correspond to the number —x. In this way, each number corresponds
to a unique point on the line. We have thus established a one-to-one
correspondence between points on the line and real numbers. What
is more, the structures of the two systems, in terms of operations that
can be performed, are similar. To give an example, the distance
XY between two points can be expressed in terms of their coordinates

by

1.1.2 XY=y—x

so that the geometric relation of distance reduces to the arithmetic
operation of subtraction.

Dealing with the geometry of the plane, we find, however, re-
quires a slightly more complicated procedure. It is, in fact, possible
to give a one-to-one correspondence between the set of points in the
plane and the set of real numbers, but this correspondence is not
natural and does not preserve the structure of the system. Instead of
assigning a number to each point, then, we assign a pair of numbers.
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Consider, in the plane, two straight lines intersecting at a point O.
The angle of intersection is not important, but for the sake of conven-
ience, it is best to assume that they intersect at right angles (Figure
1.1.2).

II
y units<

FIGURE 1.1.2 The Cartesian
plane.

-~

X units

On each of these lines, points I and I’ are taken. Although the
only need is that they be distinct from O, for convenience they are
usually taken to be equidistant from O, and I’ is usually obtained
from I by a counterclockwise rotation through one right angle.

Consider, now, a point, P, in this plane. Through P, we may draw
lines PX and PY, parallel to OI' and OI, respectively. The line PX
meets OI at the point X, while PY meets OI' at Y. As in the one-
dimensional case, just mentioned, we write

1.1.3 x—Q—X
OI
and
[0)%
1.1.4 _ oY
Yo or

where, once again, we agree to let the ratio of two line-segments be
positive if they have the same direction, and negative if they have
opposite directions.

The two numbers, x and y, given by (1.1.3) and (1.1.4) respec-
tively, are called the coordinates of the point P. The number x is
generally called the abscissa, and y the ordinate, of P. The lines OI

W
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and OI' are called the coordinate axes; OI is the x-axis, and OI’ is
the y-axis.

We have thus assigned, to each point in space, a pair of real
numbers (x,y), its coordinates. It may be pointed out that, since
OXPY is a rectangle, we must have OX=YP, while OY=XP. Thus «x
and y will be the perpendicular distances of the point P from the
y-axis _and x-axis, respectively, in terms of the common unit
OI or OI'.

2. GRAPHS AND EQUATIONS

We proceed now to study some of the advantages derived from
the analytic treatment of geometry. Let us suppose that we are given
a relation between two unknowns (or variables), x and y. This relation
might be in the form of an equation, say,

1.2.1 y=x2+3x
or of a word problem,

1.2.2 “x is not smaller than y, but not larger than twice y”
or in many other possible forms. There are necessarily certain pairs of
values (x,y) for which the given relation (1.2.1) or (1.2.2) will be true
and others for which it will not be true. If we consider the pairs of
numbers for which the relation is true, we may plot the position of the
corresponding points (i.e., the points having these pairs as their

coordinates) on a coordinate plane. The set of these points is called
the graph of the relation. Figures 1.2.1 and 1.2.2 show, respectively,

10

FIGURE I.2.1 Graph of y =x2+ 3x.
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FIGURE 1.2.2 Graph of the relation
1.2.2

the graphs of the relations (1.2.1) and (1.2.2). For the equation (1.2.1),
the graph is a curve (in this case, a parabola). As for the relation (1.2.2),
we find that its graph consists of all the points inside a wedge with its
angle at the origin.

Conversely, if we are given a curve in the plane, it is often pos-
sible to find a numerical relation that is satisfied by the coordinates of
the points on the curve and by no others. If an equation, this relation
is said to be the equation of the curve; (1.2.1) is the equation of the
parabola shown in Figure 1.2.1.

Relations between points can also be expressed analytically by
this means. Consider, for example, two points, P and Q (Figure 1.2.3),
with coordinates (x;,y;) and (x,,y,) respectively. If we let R have the
same ordinate as P, and the same abscissa as Q, we see that the lines

, Q
;b —— - — ——
FIGURE 1.2.3

Yip = — = —— = RT P
| |
| |
| |
| |
| |
1 1

0 Xo X

PQZ= RPR? + RQ2 = (x; — x3)* + (y» — y1)?

W
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PR and QR, being parallel to the two coordinate axes, must intersect at
right angles, and thus, by Pythagoras’ Theorem,

1.2.3 PQ2% = PR? + QR?
We note, now, that PR =X, X, and E= Y,Y,. Replacing these values

in (1.2.3), introducing the coordinates, and taking square roots, we
obtain

1.2.4 PO=V(x—x)%+ (42— y1)?

the formula for distance between two points in the plane.

Consider, finally, the line PQ. It makes an angle, 6, with the x-axis.
To find this angle, we note that it is the same as the angle between
PQ and PR (since PR is parallel to the x-axis). From elementary
trigonometry, we know that

RQ

tan 0 = =
PR

Now, the tangent of the angle is called the slope of PQ (see Figure
1.2.4). If we let m represent this slope, and introduce coordinates,
we have

1.2.5 m=

as the formula for slope. Although the slope is given in terms of the
coordinates of P and Q, it is a property of the line PQ, and the formula
(1.2.5) will give the same value if we substitute the coordinates of any
two points on PQ. (Sometimes the slope is defined as a property of the
two points, P and Q; it is then necessary —though easy —to prove that
the slope is constant along a line.)

FIGURE 1.2.4 The slope of PQ is
RQ
=

tan 0 = —
P

2
wb - —
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We point out that if a line is horizontal (parallel to the x-axis) its
slope must be 0. In fact, points on such a line must have the same
ordinate —and the numerator in (1.2.5) vanishes. On the other hand,
if two points lie on a vertical line (i.e., parallel to the y-axis), then the
denominator in (1.2.5) will vanish. In this case the slope does not
exist, although it is sometimes said that the line has infinite slope.

We are now in a position to prove a few theorems concerning
lines and their slopes.

1.2.1 Theorem. Two lines are parallel if and only if both have
the same slope (or no slope at all).

FIGURE 1.2.5 The two parallel
lines, | and [I’, have equal
slopes.

—

Proof (see Figure 1.2.5). On the lines | and l’, take two pairs of
points P,Q on l and P, Q' on l'. If [ and I’ are parallel, the two tri-
angles POR and P'Q'R’' are similar (having corresponding sides
parallel) and so

BO_#¢

PR P'R’

1.2.6

Conversely, if (1.2.6) holds, the two triangles PQR and P'Q'R’ are
similar. Since PR and P'R’ are parallel, this means that PQ and P'Q’
are also parallel. This covers the case in which [ and I’ both have
slopes. If the slopes do not exist, then both lines are parallel to the
y-axis, and hence to each other.

1.2.2 Corollary. Through a given point P there passes one and
only one line with a given slope m.

Proof. This follows from Theorem 1.2.1 and the well-known
Euclidean fact that through P there passes exactly one line parallel
to the line with slope m.

|
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