el e s O (A el ooy e B S |
Spring Data
¢\llléﬂjavaﬂ']ﬂ1’€§iﬁlﬁ A (FEDRR)

Yata

: ¥ Mark Pollack, Oliver Gierke,
O’REILLY Thomas Risberg, Jonathan L. Brisbin, &
¥ k% YRt Michael Hunger %

Spring Data (=i
Spring Data

Mark Pollac_lg,, Qliver Gierke,

Thomas Ris P?’% ol gl aJl f’ g ;’;’e’i §

--.{ s

O’REILLY"

Béiing<'Cambridge - Farnham - Koln - Sebastopol - Tokyo
"O'REilly Media, Inc. 444 # X 3 i Mt iR

MR REAFHRT

BEfEm&E (CIP) ¥iE

Spring Data: 4> \k%k Java fyBLAREAR THlRIE A : 33/
)iz (Pollack, M)%FHE . —RENA . —FER: AREKX
ZHAk$t, 20135

547 3¢ Spring Data: Modern Data Acess for Enterprise Java

ISBN 978-7-5641-4200-1

L DS IL O H.OCIES-BFETF-&%
X IV. ® TP312

H E kR 4 B 518 CIP i ¥ (2013) 35097349 5

LAERRBURZEERARRID
B, 10-2013-1302

©2012 by O’Reilly Media, Inc.

Reprint of the English Edition, jointly published by O’Reilly Media, Inc. and Southeast University Press,
2013. Authorized reprint of the original English edition, 2013 O’Reilly Media, Inc., the owner of all rights
to publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.
% L& Bl O'Reilly Media, Inc. # #2 2012,

ELHEPRAY A b K F AL H iR 2013)t:l} P R th RR Ao 4K AR AT B i BRAR Ao B A& FT AT & —— O'Reilly
Media, Inc. #5447,

BAHT A, RAFHEHT, KBOETHR > Fo 2 FRFUEITH X EH,

Spring Data: {k%% Java FUBLAREAR DT RIEAR (REENRR)

AR & AT A R

hb: FEREMHEE2S 4 : 210096
H R A {LEH

] fik: http://www.seupress.com

B, F-#Bf:: press@seupress.com

ER Ril: s HENRIARA =

A, T8TZE K x 980ZFE K 16 F &
k. 19.75

. 387 T+

k. 201345 HS 1 ik

K: 20134E 5 A% 1 RENRI

‘5. ISBN 978-7-5641-4200-1

#r: 58.005C (#)

A EBEAERRRAE, HEESEHBKR. BIF (f55). 025-83791830

R IFHIDH

Thanks to my wife, Daniela, and sons, Gabriel
and Alexandre, whose patience with me stealing
time away for “the book” made it possible.

—Mark Pollack

I'd like to thank my family, friends, fellow musi-
cians, and everyone I've had the pleasure to work
with so far; the entire Spring Data and Spring-
Source team for this awesome journey; and last,
but actually first of all, Sabine, for her inexhaus-
tible love and support.

—Oliver Gierke

To my wife, Carol, and my son, Alex, thank you
for enriching my life and for all your support and
encouragement.

—Thomas Risberg

e, 7 258 #EPDFIF 1A : www. ertongbook. com -

To my wife, Tisha; my sons, Jack, Ben, and Dan-
iel; and my daughters, Morgan and Hannah.
Thank you for your love, support, and patience.
All this wouldn’t be worth it without you.

—TJon Brisbin

My special thanks go to Rod and Emil for starting
the Spring Data project and to Oliver for making
it great. My family is always very supportive of
my crazy work; I'm very grateful to have such
understanding women around me.

—Michael Hunger

I'd like to thank my wife, Nanette, and my kids for
their support, patience, and understanding.
Thanks also to Rod and my colleagues on the
Spring Data team for making all of this possible.

—David Turanski

Foreword

We live in interesting times. New business processes are driving new requirements.
Familiar assumptions are under threat—among them, that the relational database
should be the default choice for persistence. While this is now widely accepted, it is far
from clear how to proceed effectively into the new world.

A proliferation of data store choices creates fragmentation. Many newer stores require
more developer effort than Java developers are used to regarding data access, pushing
into the application things customarily done in a relational database.

This book helps you make sense of this new reality. It provides an excellent overview
of today’s storage world in the context of today’s hardware, and explains why NoSQL
stores are important in solving modern business problems.

Because of the language’s identification with the often-conservative enterprise market
(and perhaps also because of the sophistication of Java object-relational mapping
[ORM] solutions), Java developers have traditionally been poorly served in the NoSQL
space. Fortunately, this is changing, making this an important and timely book. Spring
Data is an important project, with the potential to help developers overcome new
challenges.

Many of the values that have made Spring the preferred platform for enterprise Java
developers deliver particular benefit in a world of fragmented persistence solutions.
Part of the value of Spring is how it brings consistency (without descending to a lowest
common denominator) in its approach to different technologies with which it integra-
tes. A distinct “Spring way” helps shorten the learning curve for developers and sim-
plifies code maintenance. If you are already familiar with Spring, you will find that
Spring Data eases your exploration and adoption of unfamiliar stores. If you aren’t
already familiar with Spring, this is a good opportunity to see how Spring can simplify
your code and make it more consistent.

The authors are uniquely qualified to explain Spring Data, being the project leaders.
They bring a mix of deep Spring knowledge and involvement and intimate experience
with a range of modern data stores. They do a good job of explaining the motivation
of Spring Data and how it continues the mission Spring has long pursued regarding
data access. There is valuable coverage of how Spring Data works with other parts of

Spring, such as Spring Integration and Spring Batch. The book also provides much
value that goes beyond Spring—for example, the discussions of the repository concept,
the merits of type-safe querying, and why the Java Persistence API (JPA) is not appro-
priate as a general data access solution. '

While this is a book about data access rather than working with NoSQL, many of you
will find the NoSQL material most valuable, as it introduces topics and code with which
you are likely to be less familiar. All content is up to the minute, and important topics
include document databases, graph databases, key/value stores, Hadoop, and the
Gemlfire data fabric.

We programmers are practical creatures and learn best when we can be hands-on. The
book has a welcome practical bent. Early on, the authors show how to get the sample
code working in the two leading Java integrated development environments (IDEs),
including handy screenshots. They explain requirements around database drivers and
basic database setup. I applaud their choice of hosting the sample code on GitHub,
making it universally accessible and browsable. Given the many topics the book covers,
the well-designed examples help greatly to tie things together.

The emphasis on practical development is also evident in the chapter on Spring Roo,
the rapid application development (RAD) solution from the Spring team. Most Roo
users are familiar with how Roo can be used with a traditional JPA architecture; the
authors show how Roo’s productivity can be extended beyond relational databases.

When you’ve finished this book, you will have a deeper understanding of why modern
data access is becoming more specialized and fragmented, the major categories of
NoSQL data stores, how Spring Data can help Java developers operate effectively in
this new environment, and where to look for deeper information on individual topics
in which you are particularly interested. Most important, you’ll have a great start to
your own exploration in code!

—Rod Johnson
Creator, Spring Framework

xiv | Foreword

Preface

Overview of the New Data Access Landscape

The data access landscape over the past seven or so years has changed dramatically.
" Relational databases, the heart of storing and processing data in the enterprise for over
30 years, are no longer the only game in town. The past seven years have seen the birth
—and in some cases the death—of many alternative data stores that are being used in
mission-critical enterprise applications. These new data stores have been designed
specifically to solve data access problems that relational database can’t handle as
effectively.

An example of a problem that pushes traditional relational databases to the breaking
point is scale. How do you store hundreds or thousands of terabytes (TB) in a relational
database? The answer reminds us of the old joke where the patient says, “Doctor, it
hurts when I do this,” and the doctor says, “Then don’t do that!” Jokes aside, what is
driving the need to store this much data? In 2001, IDC reported that “the amount of
information created and replicated will surpass 1.8 zettabytes and more than double
every two years.”! New data types range from media files to logfiles to sensor data
(RFID, GPS, telemetry...) to tweets on Twitter and posts on Facebook. While data that
is stored in relational databases is still crucial to the enterprise, these new types of data
are not being stored in relational databases.

While general consumer demands drive the need to store large amounts of media files,
enterprises are finding it important to store and analyze many of these new sources of
data. In the United States, companies in all sectors have at least 100 TBs of stored data
and many have more than 1 petabyte (PB).2 The general consensus is that there are
significant bottom-line benefits for businesses to continually analyze this data. For ex-
ample, companies can better understand the behavior of their products if the
products themselves are sending “phone home” messages about their health. To better
understand their customers, companies can incorporate social media data into their

1. IDC; Extracting Value from Chaos (http://www.emc.com/collateral/analyst-reports/idc-extracting-value
-from-chaos-ar.pdf). 2011. .

2. IDC; US Bureau of Labor Statistics

decision-making processes. This has led to some interesting mainstream media
reports—for example, on why Orbitz shows more expensive hotel options to Mac
users (http://on.wsj.com/UhSINi) and how Target can predict when one of its customers
will soon give birth (http://www.nytimes.com/2012/02/19/magazine/shopping-habits
.html), allowing the company to mail coupon books to the customer’s home before
public birth records are available.

Big data generally refers to the process in which large quantities of data are stored, kept
in raw form, and continually analyzed and combined with other data sources to provide
a deeper understanding of a particular domain, be it commercial or scientific in nature.

Many companies and scientific laboratories had been performing this process before
the term big data came into fashion. What makes the current process different from
before is that the value derived from the intelligence of data analytics is higher than the
hardware costs. It is no longer necessary to buy a 40K per CPU box to perform this type
of data analysis; clusters of commodity hardware now cost $1k per CPU. For large
datasets, the cost of storage area network (SAN) or network area storage (NAS) be-
comes prohibitive: $1 to $10 per gigabyte, while local disk costs only $0.05 per gigabyte
with replication built into the database instead of the hardware. Aggregate data transfer
rates for clusters of commodity hardware that use local disk are also significantly higher
than SAN- or NAS-based systems—500 times faster for similarly priced systems. On
the software side, the majority of the new data access technologies are open source.
While open source does not mean zero cost, it certainly lowers the barrier for entry and
overall cost of ownership versus the traditional commercial software offerings in this
space.

Another problem area that new data stores have identified with relational databases is
the relational data model. If you are interested in analyzing the social graph of millions
of people, doesn’t it sound quite natural to consider using a graph database so that the
implementation more closely models the domain? What if requirements are continually
driving you to change your relational database management system (RDBMS) schema
and object-relational mapping (ORM) layer? Perhaps a “schema-less” document data-
base will reduce the object mapping complexity and provide a more easily evolvable
system as compared to the more rigid relational model. While each of the new databases
is unique in its own way, you can provide a rough taxonomy across most of them based
on their data models. The basic camps they fall into are:

Key/value
A familiar data model, much like a hashtable.

Column family
An extended key/value data model in which the value data type can also be a se-
quence of key/value pairs.

Document
Collections that contain semistructured data, such as XML or JSON.

xvi | Preface

Graph
Based on graph theory. The data model has nodes and edges, each of which may
have properties.

The general name under which these new databases have become grouped is “NoSQL
databases.” In retrospect, this name, while catchy, isn’t very accurate because it seems
to imply that you can’t query the database, which isn’t true. It reflects the basic shift
away from the relational data model as well as a general shift away from ACID (atom-
icity, consistency, isolation, durability) characteristics of relational databases.

One of the driving factors for the shift away from ACID characteristics is the emergence
of applications that place a higher priority on scaling writes and having a partially
functioning system even when parts of the system have failed. While scaling reads in a
relational database can be achieved through the use of in-memory caches that front the
database, scaling writes is much harder. To put a label on it, these new applications
favor a system that has so-called “BASE” semantics, where the acronym represents
basically available, scalable, eventually consistent. Distributed data grids with a key/
value data model generally have not been grouped into this new wave of NoSQL da-
tabases. However, they offer similar features to NoSQL databases in terms of the scale
of data they can handle as well as distributed computation features that colocate com-
puting power and data.

As you can see from this brief introduction to the new data access landscape, there is
a revolution taking place, which for data geeks is quite exciting. Relational databases
are not dead; they are still central to the operation of many enterprises and will remain
so for quite some time. The trends, though, are very clear: new data access technologies
are solving problems that traditional relational databases can’t, so we need to broaden
our skill set as developers and have a foot in both camps.

The Spring Framework has a long history of simplifying the development of Java ap-
plications, in particular for writing RDBMS-based data access layers that use Java
database connectivity (JDBC) or object-relational mappers. In this book we aim to help
developers get a handle on how to effectively develop Java applications across a wide
range of these new technologies. The Spring Data project directly addresses these new
technologies so that you can extend your existing knowledge of Spring to them, or
perhaps learn more about Spring as a byproduct of using Spring Data. However, it
doesn’t leave the relational database behind. Spring Data also provides an extensive set
of new features to Spring’s RDBMS support.

How to Read This Book

This book is intended to give you a hands-on introduction to the Spring Data project,
whose core mission is to enable Java developers to use state-of-the-art data processing
and manipulation tools but also use traditional databases in a state-of-the-art manner.
We'll start by introducing you to the project, outlining the primary motivation of

Preface | xvii

SpringSource and the team. We'll also describe the domain model of the sample
projects that accommodate each of the later chapters, as well as how to access and set
up the code (Chapter 1).

We'll then discuss the general concepts of Spring Data repositories, as they are a com-
mon theme across the various store-specific parts of the project (Chapter 2). The same
applies to Querydsl, which is discussed in general in Chapter 3. These two chapters
provide a solid foundation to explore the store specific integration of the repository
abstraction and advanced query functionality.

To start Java developers in well-known terrain, we’ll then spend some time on tradi-
tional persistence technologies like JPA (Chapter 4) and JDBC (Chapter 5). Those
chapters outline what features the Spring Data modules add on top of the already ex-
isting JPA and JDBC support provided by Spring.

After we've finished that, we introduce some of the NoSQL stores supported by the
Spring Data project: MongoDB as an example of a document database (Chapter 6),
Neo4j as an example of a graph database (Chapter 7), and Redis as an example of a
key/value store (Chapter 8). HBase, a column family database, is covered in a later
chapter (Chapter 12). These chapters outline mapping domain classes onto the store-
specific data structures, interacting easily with the store through the provided appli-
cation programming interface (API), and using the repository abstraction.

We’ll then introduce you to the Spring Data REST exporter (Chapter 10) as well as the
Spring Roo integration (Chapter 9). Both projects build on the repository abstraction
and allow you to easily export Spring Data-managed entities to the Web, either as a
representational state transfer (REST) web service or as backing to a Spring Roo-built
web application.

The book next takes a tour into the world of big data—Hadoop and Spring for Apache
Hadoop in particular. It will introduce you to using cases implemented with Hadoop
and show how the Spring Data module eases working with Hadoop significantly
(Chapter 11). This leads into a more complex example of building a big data pipeline
using Spring Batch and Spring Integration—projects that come nicely into play in big
data processing scenarios (Chapter 12 and Chapter 13).

The final chapter discusses the Spring Data support for Gemfire, a distributed data grid
solution (Chapter 14).

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

xviii | Preface

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

LR
1
o This icon signifies a tip, suggestion, or general note.

' A
\"“ a
X

This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you're reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Spring Data by Mark Pollack, Oliver
Gierke, Thomas Risberg, Jon Brisbin, and Michael Hunger (O’Reilly). Copyright 2013
Mark Pollack, Oliver Gierke, Thomas Risberg, Jonathan L. Brisbin, and Michael Hun-
ger, 978-1-449-32395-0.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

The code samples are posted on GitHub (https://github.com/SpringSource/spring-data
-book). ’

Preface | xix

Safari® Books Online

S .+ Safari Books Online (www.safaribooksonline.com) is an on-demand digital
arari library that delivers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and cre-
ative professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands
of books, training videos, and prepublication manuscripts in one fully searchable da-
tabase from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Tech-
nology, and dozens more. For more information about Safari Books Online, please visit
us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/spring-data-1e.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

xx | Preface

Acknowledgments

We would like to thank Rod Johnson and Emil Eifrem for starting what was to become
the Spring Data project.

A big thank you goes to David Turanski for pitching in and helping out with the
GemPFire chapter. Thank you to Richard McDougall for the big data statistics used in
the introduction, and to Costin Leau for help with writing the Hadoop sample appli-
cations.

We would also like to thank O’Reilly Media, especially Meghan Blanchette for guiding
us through the project, production editor Kristen Borg, and copyeditor Rachel Mona-
ghan. Thanks to Greg Turnquist, Joris Kuipers, Johannes Hiemer, Joachim Arrasz,
Stephan Hochdorfer, Mark Spritzler, Jim Webber, Lasse Westh-Nielsen, and all other
technical reviewers for their feedback. Thank you to the community around the project
for sending feedback and issues so that we could constantly improve. Last but not least,
thanks to our friends and families for their patience, understanding, and support.

Preface | xxi

R, 75 2 BEPDRIE U5 M) : www. ertongbook. com

