.

~
~

Theory and Practice of

Relational Databases

Stefan Stanczyk
Bob ChampiOn

Richard Leyton

Theory and Practice of
Relational Databases

Second edition

Stefan Stanczyk
School of Computing and Mathematical Sciences
Oxford Brookes University, Oxford, UK

Bob Champion
Richard Leyton

& F,
ST

5
<
&

5 Sloﬁ‘a

& ®
upged 117

London and New York

First published 1990 by Pitman Publishing
Second impression published 1993 by UCL Press
This edition published 2001 by Taylor & Francis

11 New Fetter L ane, London EC4P 4EE

Simultaneously published in the USA and Canada
by Taylor & Francis Inc.,
29 West 35" Street, New York. NY 10001

Taylor & Francis is an imprint of the Taylor & Francis Group
© 2001 Stefan Stanczyk, Bob Champion and Richard Leyton

Printed and bound in Great Britain by
Biddles Ltd, Guildford and King’s Lynn

All rights reserved. No part of this book may be reprinted or reproduced or

utilised in any form or by any electronic, mechanical. or other means, now

known or hereafter invented, including photocopying and recording, or in

any information storage or retrieval system. without permission in writing
from the publishers.

Every effort has been made to ensure that the advice and information in this

book is true and accurate at the time of going to press. However, neither the

publisher nor the authors can accept any legal responsibility or liability for
any errors or omissions that may be made.

Publisher’s Note
This book has been produced from camera-ready copy supplied by the editors.

The use of registered names, trademarks etc., in this publication does not
imply, even in the absence of a specific statement, that such names are exempt
from the relevant protection laws and regulations and therefore for general use.

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging in Publication Data
Stanczyk. Stefan, 1945-
Theory and practice of relational databases/ Stefan Stanczyk. -- 2nd ed.
p.cm
Includes biographical references and index.
ISBN 0-415-24701-2 (cloth : alk. paper) -- ISBN 0-415-24702-0 (pbk. : alk. paper)
1. Relational databases. 2. Database management. I. Title

QA 76.9.D3 S698 2001
005.75'6--dc21 2001027206

ISBN 0-415-24702-0
ISBN 0-415-24701-2

Theory and Practice of
Relational Databases

Preface

First published a decade ago, the Theory and Practice of Relational Databases
gained fairly noticeable popularity, particularly amongst those readers to whom it
was primarily addressed - the students. After a decade, however, any book needs
reviewing, for the field will have developed, presentation could be improved,
choice of topics might be reflected upon and, importantly, the comments from the
readers addressed.

Databases evolved into a classic component of computing degrees. The subject
became well supported by a wealth of research, exceptional industrial experience
and numerous books covering a wide range of topics. However, books on
databases run into voluminous proportions and tend to cover the whole spectrum
of the subject thus constituting a monographic source of reference rather than
being a learning aide.

The book we are presenting now is meant to be just that - a tutorial text that
assists the process of learning. It is supposed to have a technological bias, to
present the chosen topics in a concise manner, and to incite better understanding
through explanations and illustrative examples. In short, the book is meant to
retain those features that made the previous edition successful.

Naturally, the book does not aspire to cover all aspects of databases nor does it
pretend to present the relational theory in its entirety. The focus is on a coherent,
systematic coverage of database design. The primary objective of this book is to
present a reasonably comprehensive explanation of the process of the development
of database application systems within the framework of the set processing
paradigm.

Amongst the rich variety of data models advocated by their authors from time to
time, the relational approach has prevailed. However, for applications that require

viii Theory and Practice of Relational Databases

processing of complex data structures the relational approach may not necessarily
be advantageous. Application software built around the relational DBMS may
require user-defined, complex data structures, appropriate to the domain of that
application. Furthermore, certain types of applications do not naturally lend
themselves to the relational paradigm. Thus we chose, and not without discussion
and controversies, to include a separate chapter covering the object-oriented
paradigm as applicable to databases.

Other than that, how different is this edition from the previous one? Well, we
have noticed that learning Relational Calculus distracted many students from
appreciating the principles of the relational model rather than contributing to its
deeper understanding. Relational calculus, being isomorphic to algebra, does not
greatly enhance the model per se; rather it constitutes an alternative view on its
operational part. Accordingly, the chapter on calculus was removed and the
exposition of relational algebra strengthened to include the aspects of query
optimization and algorithms for algebraic operations.

Furthermore, we have taken the view that relational algebra , being a programming
language, deserves a proper software support. Thus LEAP, a straightforward
relational DBMS, written by Richard Leyton as an open-source project, has been
presented in a separate chapter. The system, equipped with an algebraic interface,
can be downloaded from the book’s website and used freely by the readers. This
brought about an additional benefit - the readers are given an opportunity to study
some internal mechanisms of DBMS by inspecting, and possibly experimenting
with, the source code - an experience that cannot easily be attempted with any
commercially available DBMS.

SQL - by now firmly established as the database language - received in this
present edition a far more prominent exposition. A reasonably comprehensive
description and explanation of the language (largely based on Programming in
SQL, Pitman 1993) with particular attention to its set-theoretical pedigree is
presented; developing more complex SQL programs out of primitive expressions
follows. Secondly, an overview of a programming extension is given using as an
example PL/SQL - the system developed by ORACLE to support, amongst
others, user-defined data types, conditional and looping structures, exception
handling, functions, procedures, triggers and packages. Importantly, we have
constrained the presentation of SQL to its existing software support; hence no
details of constructs specific to say SQL 3 are considered.

The case study gathers all relevant solutions analyzed throughout the book and

Preface ix

culminates in a fairly extensive model for a University Information System, partly
implemented in mySQL and using Apache to illustrate the problems and
solutions of developing an interface between a database system and the Internet.
The choice of software tools was dictated by their free availability, their technical
merits and a reasonably high popularity amongst the database developers.

Finally, the book was given a semi-interactive companion, that is its own Internet
site www.theorypractice.org with references to books, software, discussion
groups, research centres and software producers.

In the context of the above amendments, the structure of the book is now as
follows:

Chapter 1 Database approach to information systems, the generic 3-level
database architecture, characteristics of various database models.

Chapter 2 Entity-Attribute-Relationship as a technology-independent
notation for logical data modelling.

Chapter 3 The relational data model introduced as a formal system
composed of the structural, behavioural and operational parts.
Properties of the model. Relational representation of EAR.

Chapter 4 Relational Algebra and its use for data manipulation.
Implementation and optimization of algebraic expressions.

Chapter 5 Description of a didactic DBMS based on relational algebra.
Structure, operations and an example of running the system.

Chapter 6 Functional dependencies, Boyce Codd Normal Form. Norma-
lization as mechanism for optimizing the relational structures.

Chapter 7 Multivalued and join dependencies and the relevant normal
forms. Selected theoretical aspects of normalization.

Chapter 8 Structured Query Language. Data definition and manipulation.
Specifying and programming update transactions.

Chapter 9 Object-orientation as a means for developing databases with
inherently complex structures. Object relational database model.

Chapter 10 Procedural extensions to SQL with particular attention to non-
relational retrievals and update transactions.

Chapter 11 Case study

X Theory and Practice of Relational Databases

We gratefully acknowledge the comments from our colleagues and students, past
and present, in the School of Computing and Mathematical Sciences of Oxford
Brookes University.

We feel greatly indebted to Dilys Alam and Grant Soanes, our editors at Taylor &
Francis. That this book has appeared is a credit to their patience, support and
encouragement. We are also very grateful for Alison Nick’s sterling work as our
Project Manager.

Finally, our thanks to Urszula, Lucille and Frances for them being more than
forgiving of our preoccupation with writing this book.

Oxford, June 2001

Contents

Preface

Introduction

1.1 The concept of database
1.2 Database architecture

1.3 Logical database models

Data modelling

2.1 Modelling the real world

2.2 Entity - Attribute — Relationship modelling
2.3 Exercises

The relational model

3.1 Fundamental concepts

3.2 Normalized relations

3.3 Integrity constraints

3.4 Representation of EAR models by relations
3.5 Exercises

Relational algebra

4.1 Processes and their abstractions

4.2 Primitive retrieval operations

4.3 Queries as compound algebraic expressions
4.4 Optimization of algebraic expressions

4.5 Exercises

LEAP - the algebraic DBMS
5.1 Introduction

5.2 Leap architecture

5.3 A sample run of LEAP
5.4 Exercises

Normalization
6.1 Designing relations

6.2 Functional dependency. BCNF normalization
6.3 Exercises

vi

10.

11.

Contents

Further normalization

7.1 Multivalued dependency. Fourth normal form
7.2 Join dependency. Fifth normal form

7.3 Axioms of dependency theory

7.4 Transitive dependencies. Third normal form
7.5 Exercises

Structured Query Language
8.1 Introduction

8.2 Defining database objects
8.3 Querying the database
8.4 Modifying the data

8.5 Exercises

Object databases

9.1 Rationale

9.2 The object-oriented paradigm

9.3 Modelling complex objects for databases
9.4 Data definition and manipulation

9.5 Object-relational databases

SQL extensions

10.1 Introduction

10.2 Basic programming structures
10.3 Procedures, functions and triggers

Case study - implementation
11.1 Introduction

11.2 Software installation
11.3 Implementation

11.4 Exercises

Appendix A: Solutions to exercises

Appendix B: Denotations, logic, sets

Denotations
Algebra of propositions
Set operations

Bibliography

Index

121
121
125
131
136
143

144
144
145
155
168
175

176
176
179
180
185
189

194
194
195
203

205
205
207
208
231

233
243
243
244
245
247

251

CHAPTER 1

Introduction

1.1 THE CONCEPT OF A DATABASE

Proper information support is of paramount importance for the management of an
enterprise. The successful operation of a road network, a railway system, a bank, a
production company or service providers depends on relevant, precise and up-to-
date information. The relevant decisions, whether instantaneous (e.g. those taken
in real-time production control) or long term (defining strategies or policies, for
example), should be made on the basis of multiple facts and these must be
properly aggregated, evaluated and analysed in some acceptable time.

Unless the enterprise is small, the task of management is usually divided into a
number of coherent functions, such as research and development, planning,
production, sales, etc. Each of these functions takes a specific view on the
operation of the enterprise as a whole; all of them taken together aim to achieve
the ultimate goal - prosperity of the company, successful running of a project,
smooth operation of services, or whatever the objectives might be.

Although separately carried out, the management functions are not necessarily
disconnected. On. the contrary, they affect and influence one another. For instance,
financial circumstances determine in some sense planning and production, and
limit allocation of resources for research. Production, in turn, determines sales and
provides some feedback for research programmes, and so on. Consequently, some
decisions made within the scope of one function may overlap with other decisions
in some other areas. Also, several managers may use the same data, perhaps
differently perceived, aggregated or formatted.

In conventional data processing, each of the management functions is supported
by a separate information system. These systems, which operate within some
environment (computer hardware, specialized equipment for data collections,

2 Theory and Practice of Relational Databases

specially trained operators), have their own 'private' files and their own 'private'
processes developed in a programming language that is most suitable for a
particular application.

DATA DATA DATA

\iOLLECTK)N \COLLECTION YQL;LECT?ON
PRIVATE

PRIVATE PRIVATE
DATA DATA DATA
FILES FILES FILES

PRIVATE

PRIVATE PRIVATE
PROCESSES PROCESSES PROCESSES
Pascal Java C

¥ v i

N

Application A Application B Application C

Fig. 1.1 Disjoint information systems

This situation is far from satisfactory. The most commonly appreciated reasons for
this dissatisfaction are:

Redundancy of data
Several files contain the same data. The data is likely to be separately collected

according to some specific procedure devised for each of the subsystems; a
possible use of a sophisticated equipment for data collection makes the whole

Introduction 3

process rather expensive. Moreover, the data duplicates are most certainly to be
separately updated, thereby involving the risk of inconsistency.

Non-interchangeability of data

Suppose one of the applications is to be extended to incorporate some new
functions requested by the users. To produce the required results, this
application may need some new data that is not available in its own files but
happens to be present in some other system's files. However, due to several
reasons - different file organization, different formatting of data, idiosyncrasies
of programming languages - the other system's files may not be directly
accessible. Hence some additional (and in fact unnecessary) programming
effort is needed to convert the relevant files into the form acceptable by the
application in question.

Non-interchangeability of processes

Numerous routines are common for all of the applications (sorting, searching,
organizing and processing data structures are the prime examples), yet they
must be coded separately, according to the specific programming languages’
requirements. Again, some waste of programming effort occurs.

Non-transparency of the application software

A considerable part of the application software handles purely data processing
matters and this conceals the application logic rather than bringing it out. It is,
then, rather difficult to reconstruct the application logic by reading the relevant
code - these two types of information are expressed at completely different
levels of abstraction.

Inflexibility of the application software

The application software (which essentially represents processes, not the data)
contains some built-in knowledge about the data (such as data types and range
of variables, for example). This knowledge is duplicated in every program that
uses the relevant data and makes the global data consistency control difficult.
Moreover, should these types, ranges etc. change (for whatever reason -
extending a field size and incorporating a new field into a record may serve as
a typical example) considerable reprogramming must necessarily be done
throughout the whole application software.

Uncontrolled expansion
There is no mechanism to control in any systematic way a possible (and

4 Theory and Practice of Relational Databases

likely) growth of both the data and the processes, neither is there any form to
balance the conflicting requirements. Inevitably new data, new collection and
updating procedures, and new processes will be added to the systems, thus
making the system programming support and resource allocation increasingly
difficult.

To summarize, the management of the enterprise is not supported by any coherent
method for corporate control of the data. Yet the data is one of the enterprise's
assets, just as valuable as human resources, buildings, machines and finances are.
The database approach to information systems provides the management of the
enterprise with means to impose centralized control over its operational data.
This is the main advantage (and indeed, the objective) of having a database system
implemented.

DATA MANAGEMENT ROUTINES

CENTRAL STORE OF
OPERATIONAL DATA
DATA DESCRIPTION

VYVYVVYVYVYVYVVY

RETRIEVAL ROUTINES

AARARARERE

QQOQ

VAV A VY
USE RS & PROCESSES

Fig. 1.2 A simplified database structure

Introduction 5

A general concept of a database is depicted in Fig. 1.2. We shall give a detailed
account of its structure shortly, but at this point we can view a database as a
structured collection of operational data together with a description of that data.

The heart of the database system is then a central store of data - an integrated
collection of records with any excessive redundancy eliminated (some duplication
may occur for e.g. validation purposes). The data is shared among all the users of
the system be they casual interrogators, application programmers (or programs
themselves) or the Database Administrator (DBA).

The DBA (a team rather than a single person) can be thought of as a supreme
controller who supervises every aspect of the database existence. In particular, the
DBA is responsible for the database information content, the security and integrity
of data, the storage structure and access strategy and for monitoring the
performance of the database - making necessary adjustments whenever necessary.

All communication between the physical representation of the data and any user is
done through the Database Management System (DBMS). This means that
virtually every activity in the system (including defining and modifying database
structures, inserting, deleting and updating values, and all kinds of retrievals) is
controlled by the DBMS.

The DBMS contains a variety of facilities including a data definition language
(to create and modify the database structures - files, users and their privileges), a
query language (which supports all forms of retrieval and updating) and
numerous interfaces to liaise with the operating system, telecommunication
system, programming languages and other utility software. It also contains data
validation routines and maintains a Data Dictionary - a complete description of
the database structure and content.

1.2 DATABASE ARCHITECTURE

The database architecture whose brief account is the subject of this section was
proposed by the ANSI/X3/SPARC group (Tsichritzis, 1978) in an attempt to
provide a general framework for database systems, quite irrespective of their
underlying data models (hierarchical, network or relational).

The database architecture (see Fig. 1.3) essentially comprises 3 levels -
conceptual, external and internal - in an attempt to separate the logical and the

6 Theory and Practice of Relational Databases

physical aspects of the system. The main idea is to provide a framework that
makes it possible to consider the data separately from processing and to insulate
the data from all implementational aspects, be they hardware constraints, or

software facilities, or whatever.

mapping between
CONCEPTUAL and
EXTERNAL models

w=swWo

...... »| CONCEPTUAL MODEL

mapping between
... » CONCEPTUAL and
INTERNAL models

INTERNAL MODEL

Fig. 1.3 The ANSI/X3/SPARC architecture for a database system

The conceptual model is a common, unconstrained view of the data. It is a

Introduction 7

model that contains all the relevant (to the information system being developed)
facts recorded in some suitable notation. At this point it is immaterial how this
data is going to be processed or stored; all that counts is its relevance and
truthfulness. The conceptual model is supposed to be a true image of the Real
World as perceived by all parties concerned - the users and the developers alike.

Since all the data in the database is integrated, only a relatively small portion of it
is of interest to a particular user . We call this portion of the data a view. There
can be many separate or overlapping views according to the specific user's
requirements. The views can be created or destroyed as circumstances dictate,
hence the whole structure of views is dynamic.

The internal model represents the actual storage representation of all the data in
the database.There is obviously just one internal model and it is closely connected
to the actual software facilities provided by the computer system on which the
database is implemented.

All the models are recorded (stored and kept up-to-date by the DBMS in both the
source and the object form) in terms of a Data Sub-Language (DSL) as schemas.
The conceptual schema comprises definitions of all the logical units of data
together with their types, the logical relationships among them and the appropriate
validation procedures. The conceptual schema does not address the questions of
storage structure and access strategy in any way; although written in DSL it does
not depend on any particular programming language.

Every view is described by means of an external schema (also stored by the
DBMS). It contains descriptions of each of the various types of external records
which are defined on conceptual records but not necessarily in a one-to-one
correspondence. The internal schema (again stored by the DBMS) defines the
structure of the internal records and contains information on possible indices,
applicability of field values for hashing or indexing and similar properties or
physical relationships.

The mappings CONCEPTUAL <> EXTERNAL and CONCEPTUAL <> INTERNAL
(both of them stored by the DBMS, of course) ensure the database model
coherence and facilitate data independence.

The notion of data independence is fundamental to the database theory. It gives
the DBA the freedom of changing both the physical and the logical aspects of the
database system without disturbing the applications built on the database.

