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Preface

This text is designed specifically for students who require the essential definitions
of certain “advanced” technical mathematical procedures as well as the oppor-
tunity to practice these procedures. Hence, the author has deliberately avoided
the maze of symbology, derivation, and rigorous proofs that traditionally fill most
advanced mathematics texts. Algebra and trigonometry are the only prerequisites
for the understanding of the material presented. The reader with background in
analytic geometry will have an advantage, but adequate material on this subject
is provided in the first few chapters.

Chapters 1 and 2 constitute a review of fundamental algebraic concepts along
with analytical relationships for experimentally determined data. Also introduced
is the basic analytic geometry for linear, parabolic, and exponential functions.
Chapter 3 covers vectors and vector operations, along with an introduction to the
theory of complex numbers and variables.

Calculus, both differential and integral, is presented in Chapters 4 and 5, fol-
lowed by hyperbolic functions, infinite series, and gamma and beta functions in
Chapter 6. Although hyperbolic functions and infinite series could be treated in
a strictly algebraic fashion, it has been the author’s experience that by presenting
them in terms of the calculus, the coefficients of the Maclaurin, Taylor, and
Fourier series are arrived upon most simply.
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Almost all investigations of mechanical, electrical, electronic, and associated
system behavior are limited to steady state (equilibrium) conditions unless the dif-
ferential equations that describe their behavior are developed and evaluated. Such
equations are presented in Chapter 7 along with the common techniques for ob-
taining general and particular solutions.

Chapter 7 introduces the Laplace transformation: the calculus “operator” that
converts differentiation into multiplication and intergration into division, thereby
transforming the solution of many differential equations into a process of algebraic
manipulation and appendix reference. A comprehensive set of reference tables,
including logarithms, exponentials, dimensions, conversion factors, trigonometric
functions, derivatives, integrals, hyperbolic functions, gamma functions, selected
definite integrals, and Laplace transforms provides all the reference material neces-
sary to implement the concepts presented in this text.

Upon completion of this volume, the student should feel qualified to undertake
the majority of the more intricate and actual assignments of industry.

The author wishes to express his appreciation to Samuel West of the Univer-
sity of Texas at Arlington for his review of the original manuscript, and to Mrs.
Ann Mirels of the Merrill Staff for her time and efforts expended in designing and
editing this text.

Louis H. Lenert

January, 1970



Table of Contents

Chapter 1

Basic Concepts

11
1.2

1.3
14
1.5
1.6

Variables and Constants

Functions
Dependency and independency. Continuity and
discontinuity. Single- and multiple-valuedness.
Symmetry. Implicit and explicit forms.

Inequalities

Indeterminate Forms

Parametric Functions

Limits

Chapter 2
Empirical Functions

21
2.2
23
24
25

2.6

Linear Functions

General forms of the equation. Least-squares fitting.

Higher-Degree Functions
Special forms of the parabolic equation.
Least-squares fitting.
Single-Term Power Functions
Exponential Functions
Dimensional Analysis
Dimensional homogeneity. Units of measure.
Data Distributions
Central tendency. Dispersion.

vii

19
22
23
25

2

30
42
50
55
60

71



viii Advanced Technical Mathematics

Chapter 3
Vector Operations 8%
3.1 Vector Quantities 88
3.2 Complex Quantities 102
Geometric representation. Addition and subtraction.
3.3 Multiplication of Vectors 116
Use of complex algebra. Other algebraic operations.
3.4 Variable Vectors 133
3.5 Complex Variables 139
Chapter 4
Differential Calculus 133
4.1 Rates of Change 155
4.2 The Derivative 169
Algebraic quantities. Algebraic functions.
Products and quotients. Other functions.
4.3 Differential Approximations 199
4.4 Implicit Differentiation 202
4.5 Successive Differentiation 206
4.6 Partial Derivatives 222
4.7 Complex Variables 239
Chapter 5
Integral Calculus 245
5.1 Integrals of Functions 247

Other functions. Products. Substitution.
Rational fractions. Evaluation of constants.
5.2 Area Under a Curve 280
Manipulation of limits. Area enclosed by two
functions. Mean and root-mean-square values.
Horizontal area increments. Positive and negative
areas. Improper integrals.
5.3 Successive Integration 324
5.4 Partial Integration 327
Areas with double integrals.
5.5 Complex Variables 338



Table of Contenis

Chapter 6

Special Functions

6.1 Hyperbolic Functions
Inverse hyperbolic functions. Derivatives and
Integrals.

6.2 Infinite Series

Maclaurin series. Taylor series. Test for convergence.

6.3 Fourier Series
Frequency analysis. Even and odd functions.
The graphical method.

6.4 Gamma and Beta Functions

Chapter 7
Differential Equations and Calculus Transformation

7.1 First-Degree Equations
Separation of variables. Use of integrating
factor. Constant coefficients. Higher-order
homogeneous equations. The Bessel function.

7.2 The Laplace Transform
Differentiation and integration. Nonhomogeneous
differential equations.

Appendices

Common Logarithms

Natural Logarithms

Exponential Values

Absolute Dimensions

Selected Conversion Factors
Trigonometric Formulas and Tables
Table of Derivatives

Integrals

Hyperbolic Functions and Tables
10 Gamma Function Values

11 Special Definite Integrals

12 Table of Laplace Transforms

VeI A WN=

Answers to Odd-Numbered Problems

Index

345

346

366

386

409

413

414

443

439

461
465
466
467
468
470
473
474
480
484
485
486

481
491



Basic Goncepts

Mathematics is a study of the use of numbers and symbols to express relation-
ships between various quantities. To the theoretical mathematician, the symbolic
relationships, no matter how abstract, are the most important. Even the applied
mathematician (and, certainly, scientists, engineers, and technicians are ap-
plied mathematicians) finds that abstract symbology is quite useful in defining,
organizing, and analyzing the problems which confront him. Furthermore, the
symbology often simplifies the solution of problems, since it permits the easy
identification of similar groupings and expressions. For this reason, it is recom-
mended that the reader become accustomed to manipulating the symbols, resorting
to the substitution of numbers for these symbols only as a very last step in the
solution process.

The discipline associated with developing the mathematical formulation of a
problem forces an equal discipline upon “thinking” about the problem. Much
confusion can be avoided by adopting such a discipline. The procedure! for solv-
ing scientific and engineering problems may be divided into four steps:

1C. M. Haberman, Engineering Systems Analysis (Columbus, Ohio: Charles E. Merrill
Books, Inc., 1965), p. 1.
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1. a concise definition of the problem, including all important factors, as-
sumptions, and limitations;

2. the formulation of a physical model (a “picture” of the problem may help),
including a listing of all associated scientific and engineering principles;

3. the formulation of a complete set of mathematical equations, including
all dimensions and all possible simplifications of these equations; and

4. the solution of the set of equations (utilizing analog and digital computers
if necessary), with particular attention paid to accuracy.

Such a procedure is perfectly general and will be followed throughout this
book. In most examples and problems, the problem definition and physical model
will be presented—the formulation and solution of the appropriate set of equations
will comprise the “work” to be accomplished. This approach is taken because the
book is devoted to the formulation of new types of mathematical relationships
and the techniques for manipulating them to a solution, rather than to the devel-
opment of scientific and engineering principles. However, because of the applied
nature of the book, all of the mathematical concepts will be exercised directly in
the solution of scientific and engineering problems. In this respect, it is not assum-
ed that the reader has any particular technical specialty. The reader may be sur-
prised at how universal most mathematical techniques are.

Variables and Constants

Mathematical quantities lie in one of two general categories: variables and
constants. Both quantities must ultimately be assigned numerical values for them
to be of any practical use. It is the nature of the assigned values that determines
in which category the quantity belongs. In a given discussion, if the numerical
value of a quantity does not change, the quantity is known as a constant. If a
quantity can take on different values, either any value without limit, or any value
between specific limits, it is known as a variable.

The expression:

Ek = '%mvz

relates kinetic energy (E,) to the mass (m) and velocity (v) of an object. In any
single situation, the mass of an object may be fixed (constant). The velocity, how-
ever, may vary—almost without limit. Because of the equality of the expression,
the kinetic energy must also be a variable (E, changes value as the value of v is
changed). In another situation, or problem, the object may be changed—changing
the value of m. However, for the “duration” of this problem, the mass may again
remain constant, and » and E; may again vary in almost any manner.

This is not to imply that mass (or any other quantity) is always a constant in
every expression. The expression:

E = mc?*
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relates the amount of energy (FE) released during a nuclear reaction to the amount
of mass lost (m) and to the velocity of light in free space (c). For situations in-
volving this expression, c is always a constant (approximately 3 x 10® meters/sec-
ond). The mass and energy are variables.

It should be apparent, from this discussion, that (in general) quantities and
symbols, themselves, do not defiine variables and constants. The definition depends
only on the manner in which the quantity is treated in a particular situation. For
purely mathematical discussions, variables are usually represented by letters near
the end of the alphabet (r, s, t, u, v, w, X, y, and z), while the letters near the front
of the alphabet (a, b, ¢, d, and €) are reserved for a representation of constants.
For example:

y=ax*+bx+c

is a general mathematical expression where y and x are variables; a, b, and ¢ are
constants. For the set of equations:

y=3x+4+2x+4
y=5x*—4x +1

a, b, and c take on different values (3, 2, 4 and 5, —4, 1 respectively). However,
for each equation, a, b, and ¢ assume fixed values. This particular use of certain
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letters of the alphabet for variables and constants is one of convenience, not one
of necessity. In practical problems, the letter for each quantity is (most frequently)
assciated with the quantity itself (p for power, v for voltage or velocity, r for resis-
tance, etc.). Any of these may be constants or variables, depending on the situation.

Constants which take on different numerical values from one situation to an-
other are conditional constants or, more technically, parameters of an equation.
The mass (m) in the kinetic energy equation described previously is such a pa-
rameter. Figure 1-1 illustrates plots of the kinetic energy equation for different
values of the parameter. Many of the so-called “physical constants’ in science and
engineering are conditional. This is true of the acceleration due to gravity (g =
32.2 feet/second?). This value applies only at sea level, on the planet, earth. Other
constants, which do not change value under any condition, are absolute. The ratio
between the area of a circle and the square of the radius (# = 3.1415 .- -) and the
base of the natural logarithm system (e = 2.718 - - .) are absolute constants.

Identify the variables, conditional constants, and absolute constants in the
following expressions.

1. The force of attraction (F) between the earth, having mass (m;), and
the moon, having mass (m,), is related to the distance (d) between the
two:

F= G2

a&?
where G = 6.67 X 10~!! newton.meter?/kilogram?,

2. The force of attraction (F) between the nucleus of a helium atom and
the electrons (regardless of their orbital position) is given by:

4
F= (4mep)r?

where Q. is the charge of an electron (1.6 X 10~'° coulomb), Z is the
atomic number (2, for helium), €, is the permittivity of free space (8.85
X 1012 coulomb?/newton. meter?), and r is the radius of any electron
orbit.

3. The theory of relativity states that the mass (m) of any object traveling
at velocity (v) is given by:

_ 1
= Me ] = (v/c)*

where m, is the normal “rest” mass of the object and c is the velocity
of light in free space (3 X 10® meters/second).
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4.

A particular amplifier is designed to have a gain (4,). Later, it is decid-
ed that a negative feedback path will be added to the amplifier. The
gain with feedback is expressed by:

=4
T 14+ p4,

where 8 expresses the amount of feedback that is applied.

Af

During a silver-plating process, the mass (M) of silver that is deposited
on an object by a specific current (7) is given by:

1At
N AQe

where A is the atomic mass (107, for silver), N4 is known as Avogadro’s
number (6.02 X 10?6 molecules/kilomole), Q. is the charge of an elec-
tron (1.6 X 10~!° coulomb), and ¢ is the amount of time that the cur-
rent is applied.

M=

A set of batteries, each having internal resistance (r;) and producing a
terminal voltage (V) is used to form a power pack. Within the power
pack, the batteries are arranged so that there are a particular number
(m) of batteries placed in series, and a particular number () of rows of
these series-connected batteries in parallel. This power pack may be
connected to any circuit, described by resistance (R). The amount of
current that will flow in the circuit is given by:

J=—___mV
(m/n)r; + R

Plot the following functions over the range of values indicated for the vari-
ables and for each of the parameters.

7.

The electromagnetic radiation from a surface of area (A4) at tempera-
ture (T') is given by:

P = 0 AT* (watts)

where 0 = (5.7 X 108 watt/meter?. °’K¢). Plot P along the vertical
axis versus 4 (where A4 ranges from 1 meter? to 30 meters?) along the
horizontal axis, for values of 7= 10°K; 100°K; 300°K; 1000°K.

The thermal voltage associated with heating two dissimilar materials is
given by

VT = k(T - Tr)[Tn - '}-}'(T + Tr)] (VORS)

where 7 is the temperature of one material and 7, is a “reference” tem-
perature (held constant) for the other material. 7, is the temperature
at which the maximum voltage occurs and k is a thermal coefficient.
For k = 3.2 X 1078 volt/°K2?and T, = 2320 °K, plot ¥ along the ver-
tical axis versus 7" (where T ranges from 1000°K to 3000°K) along the
horizontal axis, for values of 7, = 0°K; 100°K; 300°K; 1000°K.
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Functions

One variable (perhaps y) is said to be a function of another variable (perhaps
x) if y takes on one or more values for every value of x. If:

y==6x+2

y is a function of x, and the function of x is the expression 6x + 2. In this ex-
pression, every numerical value of x produces a numerical value for y.

If a particular function is to be used many times in a mathematical derivation,
or in a particular discussion, it is convenient to use a symbolic functional notation
rather than to continually write the complete function. For example:

y=f(x) |
means that y is equal to the f-function of x. If:
f(x) =6x+2

y is defined by the same expression presented previously. However, it is now pos-
sible to manipulate the expression f(x), rather than the expression 6x + 2. Notice
that the notation f(x) has simply replaced the variable y. The reader may question
the logic of such a replacement—why not just use the variable y throughout the
discussion or derivation? The notation f(x) is preferred because y may be a func-
tion of any variable! Writing f(x) continually reminds the user that the variable
x is the one that must be dealt with in solving the problem.

The selection of the f-function of x is as arbitrary as the selection of symbols
for constants and variables, described previously. It would be just as appropriate
to use the g-function of x: g(x); or the F-function of x: F(x); or any other con-
venient symbology. The functional notation must be consistent, however. In a
given discussion or derivation, if’

f(x) =3x*+2x+ 4
the same notation cannot be used to represent a second function. A second func-
tional notation must be used:

g(x) =5x*—4x+ 1

With this distinction, it is possible to refer to f(x) and g(x)—and even to perform
mathematical operations with f(x) and g(x)—without confusion.

Frequently, the same notation is maintained for separate functions and the
distinction is made by subscripting the functional symbol. In a discussion of cir-
cular motion, for example, the kinetic energy of an object might be denoted:

Si(w) = Fmv*

and the acceleration of the object might be denoted:
2
FOERS

(where r is the radius of the circle) in order to maintain a distinction between the
two f-functions.

As the mathematical expressions being represented become more complicated,
the functional notation becomes more useful. This is especially true when a large
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number of variables are involved. The frequency of oscillation for a particular
type electronic circuit is given by:

B i
/= 2 JLIC.C/C T ]

where L (an inductance) and C, and C, (capacitances) are variables. Rather than
repeating such an expression throughout a discussion or a design derivation, it is
more convenient to use a functional notation, such as:

f=hL,C, C)

where the A-function is an arbitrary selection. Notice that constants (2 and 7z, in
this case) are not used in the notation.

The functional notation is also used when the mathematical relationship be-
tween variables is not known. For example, the electronic circuit mentioned in
the preceding paragraph might be built without any knowledge of the frequency
relationship. However, experiments with the circuit will indicate that as L, C,, or
C, are changed, the frequency of oscillation changes. In this case:

f: h(L’ Cb Cz)

is the only mathematical relationship that can be written until sufficient experi-
ments are performed, or until a circuit analysis is performed, to provide the actual
expression. Such a situation exists in many scientific and engineering investigations.
The functions that have been described thus far are algebraic functions, be-
cause all of the operations involved are algebraic operations (addition, subtraction,
multiplication, raising to a power, etc.). Functions may also be trigonometric:

F(f) = sin ¢

g(t) = cos(wt + @)

or logarithmic:
fi(w) = logyo(u + 1)
fo(w) = In(u/2)
or exponential:
H(x) = e™3*
or combinations of two or more of these types.
In order to indicate that the value of a function is to be obtained for a parti-

cular value of the functional variable, this value replaces the variable in the func-
tional notation. For example, if the value of the function:

g(x) =5x* —4x + 1
is to be obtained for x = 2, this is indicated by:
g(2) = 13*
Likewise:

g(—1) =10

*52)2 — 4Q2) +1 =13



Problems

Advanced Technical Mathematics

For multiple-variable functions, each variable must be assigned a value:
h(u,v) = 3u — 4v
h(2, —3) =18
where h(2, —3) indicates that #« = 2 and » = —3.

Werite out the complete interpretation of the following functional statements.

1. »=f@) 2. E,=0G(v) 3. A= g(gm zm)

4. y=u(x,z) 5. f=H(R,Cy) 6. f=h(Ry, R, Cc)
Write the indicated functional statements for the following mathematical
expressions.

7. The g-function for: A = 3645.6[n2/(n*> — 4)]

8. The u-function for: E = (1.294 X 10-9)T

9. The ¢-function for: y = L[cos(@ — f) + cos(e + B)]

10. The K-function for: V = V,(1 4+ m cos 2mft) where m is a constant
11, The D-function for: 4 = 201og(V.,/Vi)
12. The y-function for: y = z 4 e~
13. The f-functions for: y = 3x + 2
z=2x2—x+5
14. The G-functions for: Tz = 2.51 RCr
T, = 2.2 RC;
fu = 1/2ARCy

15. The A-function indicating that the gain of an amplifler with feedback
(Ay) is related to the gain without feedback (A4,) and the feedback

factor (f).

16. The f-function indicating that the force of attraction (F) between
planetary objects is related to the masses of the object (m; and m;) and
the distance (d) between the objects.

For Probs.'7 through 14, indicate whether the functions are algebraic, tri-
gonometric, logarithmic, exponential, or combinations of these types.

Evaluate the following functions, as indicated.
17. f(x)=7x*+3x— 10  Find: f(0); f(2)
18. g(z)=z*—4 Find: g(—2); g(6)

19. fi(u) =log(u + 1)  Find: £1(0); f1(50)
20. H(x)=e3* Find: H(0); H(—1); H(2)

_ 1
s HCL, Gy G} = 27/ L[C,C,/(C; + C2)]
Find: A[(3 X 1073), (2 X 10-6), (2 X 10-9)]




