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Preface

This book is concerned with the calculation of the number of spanning
trees of a multigraph using algebraic and analytic techniques. We also
include several results on optimizing the number of spanning trees

among all multigraphs in a class, i.e., those having a specified number of
nodes, n, and edges, ¢, denoted Q(n,e). The problem has some practical
use in network reliability theory. Some of the material in this book has
appeared elsewhere in individual publications and has been collected
here for the purpose of exposition. A formal probabilistic reliability
model can be described as follows: the edges of a multigraph are
assumed to have equal and independent probabilities of operation p, and
the reliability R of a multigraph is defined to be the probability that a
spanning connected subgraph operates. If ¢, denotes the number of
spanning connected subgraphs having i edges, then it is easily verified
that

R= Z sp (1-p).

i=n—|

For small values of p, the reliability polynomial is dominated by the

., term, and since ¢,_, is the number of spanning trees, graphs with a

vii



viii Preface

larger number of spanning trees will have greater reliability for such p. In
the study of graph theory, most of the results regarding the number of
spanning trees have only been proven for simple graphs, so herein, we
investigate the problem for the extended class of multigraphs. It should be
noted that, while extensions to multigraphs make the optimal solution
readily apparent in many problems, it is not the case for the spanning tree

problem.

In Chapter 0, we present some graph theory and matrix theory
background material so that the reader will be familiar with the
terminology used in the sequel. In Chapter 1, we introduce many
algebraic results for both simple graphs and multigraphs regarding the
calculation of their number of spanning trees. In Chapter 2, we present
and extend a classical optimization formulation of Cheng that was useful
in optimizing the number of spanning trees for certain graphs. In Chapter
3, we present a heretofore unpublished result outlined by the late Frank
Boesch in the area of spanning tree enumeration of threshold graphs. In
Chapter 4, we show that a complete graph minus a matching, previously
shown to have the greatest number of spanning trees among all simple
graphs having the same number of nodes and edges, is also optimal when
the class is extended to include most multigraphs having a single multiple
edge of multiplicity two. We also present an argument using degree
sequences that demonstrates the optimality of this simple graph for almost
all simple graphs in the class. In Chapter 5, we discuss graphs and

multigraphs having all of their Laplacian eigenvalues as integers.
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Chapter 0

An Introduction to Relevant
Graph Theory and Matrix Theory

This book is concerned with the calculation of the number of spanning
trees of a multigraph using algebraic and analytic techniques. We also
include several results on optimizing the number of spanning trees

among all multigraphs in a class, i.e., those having a specified number of
nodes, 7, and edges, e, denoted €(n,e). The problem has some practical
use in network reliability theory. Some of the material in this book has
appeared elsewhere in individual publications and has been collected

here for the purpose of exposition. In preparation, we first collect some

relevant graph theoretical and matrix theoretical results.

0.1 Graph Theory

Though we assume that the reader of this work is well versed in Graph
Theory, in this section we provide the primary graph theoretic definitions
and operations that are used in the body of the succeeding chapters. For
any other terminology and notation not provided here we refer the reader
to Chartrand, Lesniak and Zhang [Chartrand, 2011].

A multigraph is a pair M =(V,m) , where m is a nonnegative integer-
valued function defined on the collection of all two-element subsets

of V, denoted V|,,. In the case there are several multigraphs under
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2 Spanning Tree Results for Graphs and Multigraphs

consideration we use the notation M =(V(M ),m,, ). The elements of V
are called the nodes of the multigraph. We assume that V is a finite set

and n =|V| is the order of the multigraph, i.e. the order is the number of
nodes. A multiedge is an element {u,v}eV,, such that m({u,v})#0;
m({u,v}) is called the multiplicity of the multiedge. If for each {u,v},

m({u.v})€{0.1}, then M is a graph, and m™ ({1}) = E is called the edge
set. In this case, we use G instead of M and employ the alternate notation

G=(V.E).

Remark 0.1 The set of multigraphs includes the set of graphs. Thus any
result that is stated for multigraphs also holds for graphs. On the other
hand, results that are stated for graphs are only applicable to graphs and

do not hold for multigraphs.

A multigraph has a geometric representation in which each element
(node) of V is depicted by a point, and two points « and v are joined by

m({u,v})curves. Figure 0.1 shows the geometric representation of a

multigraph M and a graph G. It is traditional to refer to each point in the
representation as a node and the collection of all such points as V. Also

we refer to each curve in the representation as an edge, and the collection
of all such curves as E. In the case that m({u,v})>1we represent any

single edge between the nodes u and v by uv. The number of edges,

denoted by e, is the size of the multigraph, i.e. e=|E|= ) m({u.v}).

IV,



An Introduction to Relevant Graph Theory and Matrix Theory 3

We denote the class of all multigraphs of order n and size e by Q(n,e).

In Figure 0.1 M € ©(5,10) and Ge ©(5,7)

G

Figure 0.1: A multigraph M and a graph G.

Note that a multigraph may have several geometric representations

that look different. We say that the multigraphs M’ =(V',m’) and
M”=(V",m") are isomorphic if there is a bijection f:V'—V” such
that for every {v.v,}e V5, m'({v.v,})=m”({f(w).f(v,)}). The
two multigraphs depicted in Figure 0.2 are isomorphic, under the

bijection f(v;)=u;.

YV,
| u,

Uy, U,

Uy

M ) M"

Figure 0.2: Two isomorphic multigraphs.
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Edges are incident at its end-nodes, and two nodes which have an
edge between them are called adjacent. Node u has degree deg(u) equal

to the number of edges having that node as an end-node, i.e.

deg(u) :Zm({u,v}) .

vEN

The following theorem, the First Theorem of Multigraph Theory, was
proved by Euler in 1736.

Theorem 0.1 (The First Theorem of Multigraph Theory) The sum
of the degrees of all the nodes of a multigraph M is equal to twice the

number of edges.

Proof Let x=vyv, be an edge of M, then x contributes 1 to both

deg(v,) and deg(v,). Thus when summing the degrees of the nodes of

M, each edge is counted twice. O

Another way to represent a multigraph is by a matrix. Let M =(V,m)
be a multigraph of order n, with node set V={v.v,.....v,}. The

adjacency matrix of M, denoted A(M ) or simply A is the nxn matrix

[aﬁ] where a; =m({v,.vi}). Note if A is the adjacency matrix of M,

then D a, =deg(v,) .

j=1

Example 0.1 The adjacency matrix of the multigraph in Figure 0.1 is
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01002
1o 1 11
A=[0 1 0 3 1
01300
2 1 10 0]

A multigraph M is r-regular if each node has degree equal to r. When

the specific value of r is not needed we say the multigraph is regular.
The multigraph M =(V',m’) is called a submultigraph of
M =(V,m) if V'cV and m'({u,v})Sm({u,v}) for all {u,v}e V) .If

V=V, then M’ is called a spanning submultigraph. If M is a graph

then we use the terms subgraph and spanning subgraph. If
m'({u,v})=m({u.v}) for all {u,v}eV), then M’'=(V'.m’) is an
induced submultigraph and is denoted by (V) If <V’) contains no
edges, i.e. m({u,v}):O for all {u,v}eV) then Vv’ is called an
independent set of nodes. If V'=V and m'({u,v})=min{m({u,v}),l}
for all {u,v}e V), ,then M"=(V',m’) is a spanning subgraph called the

underlying graph of the multigraph (V,m). In Figure 0.1 G is the

underlying graph of multigraph M.
A path in a multigraph M is an alternating sequence of nodes and

edges v, X, Vs, Xy, Vaseens X5V, Where {v,v5,...,1, ) are distinct nodes
and x; is an edge between v, andv,,. If the multigraph is in fact a graph

then it is only necessary to list the nodes. The length of a path is the
number of edges in the path. It is evident from the definition that a path

on k nodes has length k —1. A cycle in a multigraph M is an alternating
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sequence of nodes and edges v, x,,v,,X,,Vy...., 0,V ,X,,V,, Where
{vo.v+-..,v, } are distinct nodes and x; is an edge between v, | and v,,
1<i<k—1,and x, is an edge between v, and v, . The length of a cycle

is the number of edges in the cycle, so a cycle on k nodes has length k.
In a multigraph it is possible to have cycles of length 2, i.e. if there are
multiple edges between a pair of nodes, but in a graph the minimum
cycle length is 3. A graph G is acyclic if it has no subgraphs which are
cycles.

A multigraph is connected when every partition of the node set

V=V uV,, V.V, ,and V|, NV, =@ has at least one multiedge with
one endpoint in V, and the other in V,. Alternately, a multigraph is

connected if there is at least one path between every pair of nodes. A
multigraph which is not connected is disconnected. A component of a
multigraph M is a maximal connected submultigraph M, i.e. if M"is a
submultigraph of M that properly contains M”, then M”is disconnected.
A disconnected multigraph contains at least two components, thus a
multigraph is connected if and only if it has one component.

A free is a connected graph with n nodes and n—1 edges.
Considering a longest path in a tree it is easy to see that a tree has at least
two nodes of degree 1, called leaves or pendant edges. A spanning
subgraph that is also a tree is called a spanning tree. Figure 0.3 depicts a
multigraph and one of its spanning trees. It is easy to see that a

multigraph has spanning trees if and only if it is connected.



