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Direct Stresses and Strains

1.1. GENERAL

External forces applied to a body have the tendency to deform the
body which developes an internal resistance against the deforming
forces. This resistance increases with the increase in deforming forces
but only up to a certain limit, beyond which the deforming forces will
cause the failure of that body. The ultimate internal resistance, to the
external forces, offered by a body depends upon the type of deforma-
tion taking place and the nature of material of which the bndy is
made.

In strength of materials the internal effects produced and the
deformations of bodies caused by externally applied forces is studied.
Whereas in Engineering mechanics the study is confined to rela-
tions between externally applied forces on rigid bodies, either at rest
or in motion.

1.2, STRESS

External forces acting on a rigid body are termed as loads. All
externally applied loads deform an elastic material. As the material
undergoes deformation it sets up internal resistance to the deforming
forces. The quantum of internal resisting forces correspondingly in-
creases with the increase in externally applied loads only up to a
certain limit beyond which any increase in applied loads will continue
the process of deformation to the stage of failure. The deformation is
known as strain and the resisting forces are called stresses. Since
within elastic limit (Art. 1.4) the resistance offered by a body is the
same as the load applied so the stress may be defined as load
per unit area and be mathematically expresses as

P
p= 4 ... (L)
where  Stress intensity=p
Load applied=P
Area of X-section of the loaded section=A4.
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If the load or total force P be expressed in kg and the area A4 in
cm? then the unit of stress shall be kg/cm?.

For the present we plan to study the following three types of
stresses—(i) Tensile stresses, (if) compressive stresses, and (iii) shear
stresses.

1.2.1. Tensile stress. Consider a straight bar of uniform X-section
(Fig. 1.1) subjected to a pair of collinear forces acting in opposite
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A bar in tension

Fig. 1.1.

directions and coinciding with the axis of the bar. If the forces are
directed away from the bar then the bar tends to increase in length
under the action of applied forces and the stresses developed in the
bar are temsile. Tensile stresses are generally denoted by p;.

1.2.2. Compressive stress. In the case discussed above if the
forces are directed towards the bar (Fig. 1.2) then the bar tends to

P

i i
l T
P
—_ Pt
1 L

A bar in compression
Fig. 1.2.

shorten in length under the action of the applied forces. The stresses
developed in the bar are compressive and are generally denoted
by p..

For shear stress refer to Art. 1.8.

1.3. STRAINS

Strain is a measure of the deformation produced in a member by the
load. Direct stresses produce change in length in the direction of the
stress. If 3/ be the change in length / of a member caused by certain
stresses then the strain
e= 3 ... (L2)
I
Strain may be defined as change in length per unit length.
Tensile stresses increase the lengths whereas compressive stresses
decrease the lengths as such tensile strains shall be taken as positive
and compressive strains as negative. Since strain is a ratio of two
lengths, it has no units,
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1.4. STRESS-STRAIN DIAGRAM FOR MILD STEEL

Consider a steel wire (Fig. 1.3) held rigidly at its ——
upper end and carrying a weight at its lower end. M%M
It is one of the simplest cases of a body under i
tension. Under the action of the load a small but

measurable increase in length of the wire shall be

noticed. For small loads extension in length shall be

found to be proportional to the applied load. Robert

Hooke discovered in 1678 this linear relationship \
between the applied load and the resulting extension. ‘[
Materials showing this characteristic are said to 1
obey Hooke’s law. é

On gradually increasing the loads on the wire a
stage is reached where the material ceases to show
proportional extensions. The corresponding point p
on the load extension curve (Fig. 1.4) is known as  Stretching of a
the limit of propertionality. Extension of the wire steel wirc
beyond the limit of proportionality is non-linear. Fig. 1.3
The wire, when loaded up to the limit of proportion- -
ality, returns back to its original unstretched position. This property

Stress

Strain

Fig. 1.4,

of the material to recover its original position on removal of applied
loads is known as elasticity, For every material there is definite
limiting value of the ioad up to which the deformation of the material
totally disappears on removal of that load. The corresponding stress
developed in that material by that limiting load is known as elastic
limit, The elastic limit is defined as the maximum stress up to which
no permanent deformation occurs. The strain that does not disappear
on removal of load is known as permanent set,

The stress strain curve is linear up to p, thereafter it becomes a little
flatter and curved too up to e. From O to e the strain disappears fully
on removal of load. Point e up to which the material behaves as an
elastic material represents the elastic limit. With increase in load the
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strain goes on increasing along ey up to y. Immediately beyond the
point y there is an increase in strain even though there is no appre-
ciable increase in stress. The stress corresponding to the point y is
called the yield point stress. At the yield stress the material begins
to flow. At u the stiess is the maximum and is known as ultimate
strength. Beyond u the bar elongates even with decrease in stress
and finally fails at a stage corresponding to point f.

The ratio of maximum load, that the specimen is capable
of sustaining, to its original area of cross-section is termed
as ultimate stress of the material.

After u the specimen is greatly reduced in cross-section area. At f,
the point of failure, the reduced area is the least and this pheno-
menon is known as necking.

1.5. HOOKE'S LAW

It states that for materials loaded within elastic limit the stress is
proportional to the strain. Mathematically it can be expressed as:

%=Constant (called the Young’s modulus or the
modulus of elasticity and denoted by E)
l ——
or 5 an s (1:3)

Young’s modulus £ may thus be defined as the stress
required to produce unit strain,

Since the unit of stress p is kg/cm® and the strain e being only a
ratio the unit of E shall be kg/cm?.

1.6. CHANGE IN LENGTH OF A BODY DUE TO
APPLICATION OF LOAD ON IT

Consider the wire in Fig. 1.3 to be subjected to a pull of load P.

Let

I=original length of the wire

A= X-section area of wire

3/=change in length caused by the applied load

e=strain in wire due to applied load

p=stress intensity in the wire due to applied load
From Hooke’s law we have:

—f =E ...(Eq. 1.3)
P
or e=-p ...(1.4)
Substituting for e from Eq. 1.2 and for p from Eq. 1.1 we have:
3 _ P
I AE
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Pl
or Sl—ﬁ ...(1.5)

1.7. FACTOR OF SAFETY

At stresses below the proportional limit the material is perfectly elastic
and beyond this limit a part of the strain usually remains after un-
loading the member. In order to avoid permanent set in structures it
is usual to adopt working stress, p,, well below the limit of propor-
tionality. The usual practice is to adopt working stress as a fraction
of the uitimate stress, pu:.

Thus working stress is

_ DPuit
pil) n

Lt

or ..
Pw

where 1 is the factor of safety and may be defined as the ratio
of ultimate stress to the working stress adopted.

The magnitude of the factor of safety to be adopted depends upon
the nature of loading; the homogeneity of materials used and the
accuracy with which stresses in members and external forces can be
evaluated.

EXAMPLE 1.1. 4 steel rod of 20 mm diameter and 500 ¢cm long is
subjected to an axial pull of 3000 kg. Determine (i) the intensity of
stress, (ii) the strain, (iii) the elongation of rod. Take E=2.1Xx10°
kglcm?®.

SOLUTION. Diameter of rod=20 mm=2.0 cm.

Length of rod==500 cm.

Load=3000 kg.
E,;=2.1x10°% kg/cm?

7 X 2.0?

X-section area of rod is A=" 4 =3.14 cm?
(i) Intensity of stress is p:,}: 330?49 =955,41 kg/cm?
.. : _ P _ 95541
(if) Strain e=-p 1% 10°
=0.000455 (Strain has no unit)
(iii) Elongation 3] P 3000% 500

T AE  314x2.1x10°
=0.2275 cm,
EXAMPLE 1.2. A steel rod of 20 mm diameter and 500 em long

elongates by 0.2275 cm when subjected to an axial pull of 3000 kg.
Find Young’s modulus for steel, the stress and the strain.

SOLUTION. Diameter of rod =20 mm=2.0 cm.
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Length of rod is /=500 cm
Elongation is 8/=0.2275 cm
Pull is P=3000 kg

X-section area of rod is =WX42’Od=3.14 cm?®
Pl
1 i O] —=—"_
Using the relation l iE

B Pl _3000x 500
T A8l 3.14x0.2275

=2.1x 10% kg/cm?
Stress is p=§ = %
=955.41 kg/cm?
p _ 95541

Strain is e—*E 21X 10°
=0.000455.

EXAMPLE 1.3. A short hollow cast iron cylinder of wall thickness
1.0 ¢m is to carry a compressive load of 60 tonnes. Determine its out-
side diameter if the ultimate crushing stress for the material is 5400
kglem?. Use a factor of safety of 6. (Banaras Hindu University, 1977)

SOLUTION, Let outside diameter be D,. Since wall thickness is
1.0 cm, the inside diameter of the cylinder is (D,—2) cm (Fig. 1.5).
Area of cross-section
_T[D*—(Dy—2 ]

4

__n(4D,—4) Y 1 cm thick
S
=n(D,—1) cm?

Crushing load for the column l Dy— ;l
=5400X (D, —1) kg Fig. 1.5.
=5.4xXn(D,—1) tonne

Factor of safety =6

. Safe load =M><"g——’£9 =60

_ 60x6 _
or D,= % A +1=22.22 cm,

EXAMPLE 1.4. 4 20 cm long steel tube 15 cm internal diameter
and 1 cm thick is surrounded closely by a brass tube of same length and
thickness. The tubes carry an axial load of I15T. Estimate the load
carried by each. E,=2.1X10° kg/cm®; E,=1x 10° kg/cm?>.

(Delhi University; B. Arch., 1974)
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SOLUTION. Outer and inner diameters of steel tube are (154-2)
=17 cm and 15 cm respectively and for brass tube they are (17-+2)
=19 cm and 17 cm respectively.

.. Cross-sectional area of steel tube is

2 2
As:n(ﬂ . 15%)
=50.265 cm?*
Cross-sectional area of brass tube is
2 __ 2
Ay (19 . 17%)
=56.549 cm?
Young’s modulus for steel is
E=2.1x10° kg/cm?
Young’s modulus for brass is
E,=1x10° kg/cm*
Length of each tube is
/=20 cm
Axial load is P=15000 kg

Let P; and P, be the loads shared by steel and brass tubes res-
pectively.

Thus P+ P,=15000 e i)
Changes in length for both the tubes are the same.

P _ Pl

AE, A,E,

P, _ AE, _50.265x2.1% 10°
P, AE,  56.549%1x10°

s P,=1.867 P,
From equation (i) we have:
P,=523195 kg
and P,=9768.05 kg.
EXAMPLE 15. 4
vertical load of 2800 kg
is supported by two in-
clired steel wires AC and
BC, each 6.0 metre long
as shown in Fig. 1.6. If
allowable working stress
in wire in tension is 700
kglem?*  determine  the
required cross-sectional
area of each wire and
the vertical displacement Fig. 1.6.
of the point C. Take E=2.0X 10% kg/cm®. (Osmania University, 1976)

or =1.867

A

2800 kg
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SOLUTION. Load P will cause tension in both the wires AC and
BC and by symmetry the tensions in both the wires shall be equal
say T. Balancing the forces in vertical direction at joint C we have by
resolving:

2T cos 60=2800=2T"x %
. T=2800 kg
Allowed stress in wire is
p=700 kg/cm?.
Required X-section area 4 of each wire
_ 2800
700
=4.0 sq cm.

Displacement of point C. Iet the point C displace to C’
(Fig. 1.7). Since the displacement is small / C’AB can still be taken
to be 30°.

Draw CD | AC'. A

Now AC=AD and
DC’ is the elongation
of AC.

Pull in the member
AC is 2800 kg and its
X-section area is 4.0
cm?.

Elongation DC’ is
given by equation 1.5

P
" P=pXA or A=‘)
(+ p=r )

Fig. 1.7.
(s Pl _ 2800%600
D =dl= = 4 2.0x 100 =0-21 em
Displacement of C=CC'= 2 —021%2-042 cm.
cos 60

EXAMPLE 1.6. 4 rectangular base plate is Jixed at each of its four
corners by 20 mm diameler bolts and nuts as shown in (Fig. 1.8). The
plate rests on washers of
22 mm internal diameter
and 50 mm external
diameter. Upper washers,
which are placed between
nut and the plate, are of 7/
22 mm internal diameter . W //
and 44 mm  external
diameter. If the base
plate carries a load
of 12t (including self
weight) which is equally
distributed at four cor- ’ Lower washer
ners, calculate the stress Fie. 1.8
in the lower washers Bt
before the nuts are tightened. What would be the stress in the upper

Upper washer

Base plate.
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and lower washers when the nuts are so tightened as to produce the
tension of 0.5t in each bolt. (A.M.LE., May, 1976)

SOLUTION. Total load cairied by the base plate=12 tonnes
Since the plate is held by 4 bolts, load shared by each bolt
=12=3 tonne=3000 kg

Area of lower washer:% (52—2.2%)=15.83 cm?

Stress intensity in the lower washer

3000 :*
1?83—189.51 kg/cm e

When the nuts are tightened the compressive load in the upper
washers equals the tension in each bolt which is 0.57 =500 kg.

Area of the upper washer
=% (4.4°—2.2%)=11.40 cm®

Stress intensity in the upper washer
500

=m=43_86 kg/cm?
Total compressive load on the lower washer when the nuts have
been tightened =(3000-+500)=3500 kg.

Stress intensity on the lower washer (when the nuts have been
tightened)
3500

~15.83

=221.10 kg/cm?,

1.8. SHEAR STRESS

Consider two plates 4 and B (Fig. 1.9a) joined together by a rivet C.
If the plates be carrying a tensile load P then the rivet may shear
along the plane XX (Fig.

1.96). If d is the diameter P C P
of the rivet then the area <=— B @ LA
of X-section of the rivet 3
subjected to shear is ;
d? (&)
A= 4 TN
X 7 AT
and the shear stress P BT T
P /4
=7 .« .. (16)
(b)
- PO,
T rd? P
It should be noted that M////m // it
the applied load is tangen-
tial to the resisting area -(c)
and therefore shear stress is - ' L8
ig. 1.9.

also termed as tangential
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stress. The tensile and compressive stresses on the other hand are
caused by forces acting perpendicular to the areas resisting those
forces and as such these stresses are termed as direct stresses or
normal stresses,
1.8.1. Shear strain. Shear force causes relative displacement of
the material in the direction of the force. Consider a block ABCD
P fixed at the face AB and subjected to
D D—> ¢ ' a tangential force P on the face DC
7 (Fig. 1.10). Let ABC'D’ be the shape to
MpE--+/m’ which the block gets distorted under the
/ action of the applied force. The defor-
LEL’ mation LL' is in height BL; MM’ in
A height BMand CC’ in height BC.
) - Shear strain is the deformation
. caused by the shear force per unit
Fig. 1.10. height or length.

LL _MM' _ CC’
BL BM  BC

(Since ¢ is always very small therefore tan $=4).

Thus ¢ in radians is a measure of the shear strain.

Since intensity of stress is resistance per unit area, its unit will be
tonne or kg/cm? depending upon the units of force and of area used.

The corresponding shear strain ¢ being in radians is a number.

1.8.2. Complementary shear stress. Consider a rectangular
block (Fig. 1.11) of length /, width b and thickness 7. Let the faces
AA'B'B and DD'C'C be subjected ,
}o a shear stress g. Now the shear /D ¢’
orce on each of the two faces is : <
(gXIxt). Under the action of 7= D - a
these two forces the block shall be | .| | -
in linear equilibrium but subjected ¥ |, 2. I r
to an anticlockwise couple M= ¥ L~ t
(gXIXt)Xb. Only a moment A 4q
can balance a moment. There-
fore, for the block under considera- Fig. 1.11.
tion to be in equilibrium there
must be a couple of equal magnitude but opposite in nature. Shear
stress ¢ at the two faces A4’DD’ and BB'CC’ will thus automatically
cause a shear stress (say) ¢’ on the two faces A4'D'D and BB'C'C
such that they form a couple of magnitude M=(gxIx )X b and
clockwise in nature.

(@' Xtxb)x]=(gxIXt)Xb

5 q'=q.

H.er.lce,.it follows that shear stress in one plane on a block in
equxlll.)rlum is automatically accompanied by an equal and
opposite shear stress known as complementary shear stress
in another plane perpendicular to the first plane.

Thus the shear strain=

=tan ¢=a.
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1.9. NORMAL STRESSES DUE TO SHEAR STRESSES

Figure 1.12 shows a cube of side @ subjected to a shear stress g on its
faces AB and CD. This gives rise to complementary shear stress of
intensity g on faces BC
and 4D, as discussed in
Art. 1.8.2. Consider the
equilibrium of wedge
ABC.

Areas of faces AB

and BC are a® each. The
total forces acting on q
either face is ga®.
Resultant R of these —->qa?
two equal forces A 5 BN
. S q -
=1/(qa‘~’)2+(qa2)2 qaz‘/ R=qa2«2
=qa*V 2 Fig. 1.12.

Since the two forces are equal the resultant shall act normal to the
sectional plane at AC i.e. along the diagonal DB. Similarly, by con-
sidering the equilibrium of wedge ADC it shall be observed that a
force R=qa*V 2 shall act along diagonal BD. The diagonal BD will
thus be subject to a tensile force of magnitude ga®Vv 2 .

The diagonal AC will similarly be found subject to compressive
force of magnitude ga2v 2 .

The length of diagonal BD will thus increase under tension and
that of diagonal AC will decrease under compression and the cube
shall take up the shape shown in

Fig. 1.13. R
Length of diagonal AC=aV 2. \D /R
Thus, area of X-section at the C
plane \
AC=av 2 xa=a*V 2 \
Thus, tensile stress on the plane
ac=1V2 _
a*Vv 2
Similarly, compressive o} A B
the plane fi’D is allas;j qs stress on R/ \R
Hence, if shear stress ¢ be acting
on each one of a pair of two mutu- Fig. 1.13.

ally perpendicular plane then it

produces a pair ~of normal stresses of different nature on a pair of
mutually perpendicular planes inclined at an angle of 45° to the first
set of planes.
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1.10. MODULUS OF RIGIDITY

For elastic materials it is found that within certain limits shear
strain is directly proportional to the shear stress producing it. The

shear stress is called the modulus of rigidity and is generally

ratio :
shear strain
denoted by G, C, or N.
Thus, Cc= -;]S— c (1)
(Units of C are the same as those for q i.e. tonne[cm? or kg|cm?)
If ¢=1then C=g¢q

Thus Medulus of rigidity may be defined as the shear stress
needed to produce unit shear strain,
EXAMPLE 1.7. Anangl> brac-

ket transfixed to a vertical column
(Fig. 1.14) carries a load of 4000
kg. If the bracket is riveted to the 4000 kg

column with two 16 mm diameter
rivets find the average shear stress
in each of the rivets.
SOLUTION., Diameter of each j
rivet=16 mm=1.6 cm :
X-section area of each rivet is

2
A="X4"6 —2.01 cm?

Load of 4000 kg carried by the
bracket is shared equally by the
two rivets.

.". Load carried by one rivet is

P=29020-7000 kg

Average shear stress in each rivet is

__ 2000
=301

=995.02 kg/cm?

=9.95 kg/mm?,

EXAMPLE 18. 4 tie rod made up
of two parts as shown in Fig. 1.15 is to
carry a load of 9900 kg. Determine a
proper diameter for the connecting bolt
if the allowable working stress in shear
is 700 kg/em?®. (Calcutta University, 1976)

SOLUTION. Assume that the bolt is
free from bending action. For failure of
bolt it must shear across two sections
ab and cd. The bolt is thus in double
shear. Let the required diameter of bolt

— Angle bracket

_—Column

S
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be d. Use the relation

q—_-—?‘P7 (because the bolt is in double shear
therefore 2A and not A as in Eq. 1.2)
= P —_ 2P .
= E ol
2¥ 4
But it is given that g=700 kg/cm® and P=9900 kg.
700222200
nd?
or nd?2=28.286
. d=3.0 cm,

EXAMPLE 1.9. It is desired to punch a hole of 20 mm diameter
in a plate 20 mm thick. If the shear stress of mild steel is 30 kg/mm?
find the force necessary for punching and the stress in the punch.

SOLUTION. Diameter of hole is d=20 mm

Thickness of plate is =20 mm
; 7w X 400 ®

Area of X-section of punch =3 =1007 mm?

Shear stress is g=30 kg/cm? (Given)
‘[P
/’ 20 mm

— T
l e md 20 mm

Fig. 1.16.

Punching force is (Fig. 1.16) P=gXndXt=30X7nx20x20
=120007 kg=37699 kg
Stress in punch p= §=1?8%5=120 kg/mm?,
EXAMPLE 1.10. With a punch for which the maximum crushing
stress is 4 times the maximum shearing stress of the plate, show that
the biggest hole that can be punched in the plate is of diameter equal
to the plate thickness. (Kurukshetra University, 1976)
SOLUTION. Let
d=Diameter of hole that can be punched in the plate

t=Thickness of plate
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r.=Crushing stress$ of punch
q=Shear stress of plate

It is given that:
=4q R ¢))

Pe
Load on punch is
d* ..
P=pc><ﬂ:4 ... (i)

Area of plate resisting shear (Fig. 1.17) is
=ndXt

Force required to punch the hole -—
P=nxdxtxgq ... (idd) gy

Equating loads in Eq. (if) and in Eq. (iii), we
have:

g~

Fig. 1.17.

rd*
Pe 4 =T dlq

Now substitute for p, from equation (i) above
2
4gx ,EZ., =ndlg or d=t.

*. Diameter of the hole punched is equal to the plate thickness.

EXAMPLE 1.11. Two parts of a tie bar of diameter D are con-
nected in such a way that the end of one part fits into the forked end
of the other part and a pin of diameter d passes through the two. The
pin is in double shear. If p and q be the tensile and shear stresses in
the rod and the pin respectively show that for uniform resistance

d p
DN 2¢-
SOLUTION. Let p=tensile stress in the rod
g=shear stress in the pin
nD?

Pull in the tie is P=pX 4

(London University)

/ (—ﬁl " Rod—
=

—
—d-

Fig. 1.18.

The pin is in double shear. It shears along two sections XX and YY.
(Fig. 1.18)
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Strength of pin (in double shear)

2

7T,
=2XgX a

Since the resistances offered by the rod and the pin are equal in
magnitude

nwD? _ rd?
PX= =2XgX =
d_[r».
D "\ 2q

EXAMPLE 1.12. A4 shaft is subjected to a twisting moment which
produces a shearing stress of 1200 kg/cm?® at its surface in planes
perpendicular to its axis. Taking C=0.86x10° kglcm?® find changes
in the angles of a small square scratched on the surface of the shaft
with two of its sides paralled to axis of the shaft.

SOLUTION. Within limits of proportionality

c=1 oré= 4

¢ C
. _ 1200 .
ace p= 0.86% 1 106—0.001395 radian.
But 7 radian=180°
®

0 10.001395=0,0799°

0.001395 radian— .

K
=4' 48"
Change in angle ¢ =4" 48",

EXERCISE—I.1

1. A steel bar 5 metres long and 2.5 cm in diameter is stretched 20 mm by
a load of 8 tonnes in pulling it axially. Calculate the stress, strain and the
modulus of elasticity of the bar.

(1629 33 kg/cm?; 0.0004; 4073.33 tonnes/cm?)

2. Acircular bar 1 cm diameter and 0.6 m long was tested for Young’s
modulus of elasticity. It was observed that under a pull of 1360 kg the
extension was 0.492 mm. Find the value of Youong’s modulus of elasticity

(2.11 X10° kg/cm?)

3. Determine the load under which a hexagonal bar of 1.5 cm side and 2.5 m
length would contract by 2 mm. Taxe E=2.15x10°® kg/cm?.
(16070 kg)

4. A short hollow cast iron cylinder of wall thickness 2.0 cm is to carry a load
of 40 tonnes. Determine its outside diameter if the working stress for the
metal in compression is 800 kg/cm?.

(9.96 cm)

5. Calculate the force required to punch a circular hole 6 cm in diameter in a
plate ¥ cm thick. Take ultimate shear stress of the plate=3500 kg/cm?®.

(33000 kg)

6. A shaft is subjected to a twisting moment which produces a shearing stress
of 1200 kg/cm?® at its surface in planes perpendicular to its axis. Change in
the angles of a square scratched on the surface of the shaft with its two
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sides parallel to axis of the shaft was found to be 4'48”. Determine modulus
of rigidity for the shaft material.
(0.86 X 10° kg/cm?)

7. A mild steel round shaft transmitting twisting moment develops shear
stress at its surface in a plane at right angles to the axis of shaft. A small
square v ith two sides parallel to the axis of shaft is scratched on the surface
of shaft. If 0.0017 radian is the change in angles of square after applcation
of stresses calculate the value of g. Take C=8.5x10° kg/cm?

(1445 kg/cm?)

1.11. ELONGATION OF BARS OF VARYING CROSS-
SECTIONS

If a bar is made up of a number of portions of
different cross-sections then the total elongation
of the bar is the sum of the elongations of each
portion constituting the bar length.

Consider a bar (Fig. 1.19) composed of three
sections of lengths /;, /; and /; having respective
areas of cross-sections A4;, 4, and A;subjected to
an axial pull P. If 3/, d/,, and 3/; be the respec-
tive changes in lengths of the three sections then
we have

Pl
311=Alé « »+ (1.5)
| 8[2=A1:!g
_ Pl
813—,435

where E is the modulus of elasticity for the
material of which the bar is made.
Now the change in length &/ of the entire bar is
31==81,+ 81,43l
_ Pl P, Pl

=4.E T4LE T 4E

_P(h bk

_E(A1+A2+A; ... (18)
EXAMPLE 1.13. 4 bar ABCD shown in Fig. 1.20 is subjected to a

tensile load of 18000 kg. If stress in the material is limited to 1400

18000 kg[ 1 7 18000 kg
<— 5 cm dia. 5 cm dia.—>
v
A B c D
— 40 cm Q,Jl

Fig. 1.20.



