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PREFACE

The idea for a handbook of symbiotic cyanobacteria originated during my discussions
with Dr. B. Bergman and Dr. P. Lindblad while I was a visitor to the Department of
Physiological Botany at Uppsala. We felt that there is a conspicuous lack of a reference
source for those working on cyanobacterial symbioses, since the literature is scattered in
various journals and review articles. The last 10 years have seen considerable advancement
in research on cyanobacterial symbioses and their potential exploitation. In this book, I have
attempted to compile the information available so far. The book consists of chapters on
cyanobacterial symbioses with fungi (lichens), bryophytes, pteridophytes (Azolla), gym-
nosperms (cycads), and angiosperms (Gunnera). In addition, there is an introductory chapter,
a chapter on artificial symbioses, and a chapter on general methods, each written by an
expert in that field.

I wish to thank all those who have helped me in bringing out this book. They include
all the contributors, Amy Skallerup and Sandy Pearlman of CRC Press, and my colleagues,
students, and office staff at the Department of Biochemistry, NEHU, Shillong. In the
preparation of this volume, the granting of copyright permissions by various publishers has
been a great help, and I thank them for their liberal approach in this matter. I give a vote
of special thanks to my father Shri Abhai Narain Rai, my wife Urmila Rai, and my friend
Mr. David Nongrum who, in more than one way, have helped me devote the necessary time
for preparation of this book.

I hope the readers find the book interesting and helpful. I shall gratefully welcome
suggestions for improvement.

A. N. Rai
Shillong
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Chapter 1
CYANOBACTERIA IN SYMBIOSIS

Amar N. Rai

THE CYANOBACTERIA

Cyanobacteria (blue-green algae) are photosynthetic prokaryotes with an oxygenic pho-
tosynthesis. Their characteristic blue-green color is due to the presence of phycobiliproteins
(phycocyanin and phycoerythrin) and chlorophyll a. Their morphology ranges from unicel-
lular to branched filamentous with a maximum of three cell-types: heterocysts, vegetative
cells, and akinetes. In addition to having oxygenic photosynthesis, many cyanobacteria are
also diazotrophic. In such cases the two processes are separated, either spatially (nitrogen
fixation in heterocysts and photosynthesis in vegetative cells) or temporally (alternate cycles
of photosynthesis and nitrogen fixation), to avoid deleterious effects of high oxygen con-
centration on nitrogenase.

Reproduction in cyanobacteria is generally by fission, budding, trichome breakage,
hormogonia formation, or akinete germination. Conjugation, transformation, and transduc-
tion have also been reported. For detailed information about free-living cyanobacteria, a
number of monographs are available.'?

Cyanobacteria are truly ubiquitous, being distributed throughout the world under widely
varying conditions. Only those which occur in symbioses are addressed in this chapter. Most
organisms show structural, physiological, biochemical, and genetic adaptations to their
environment. Cyanobacteria are no exception. Indeed, symbiosis as a habitat exerts consid-
erable influence on cyanobacterial metabolism (see Chapters 1 through 7).

CYANOBACTERIAL SYMBIOSES

Elaborate discussion on the concept of symbiosis is found in works by Scott,* Ahmadjian
and Paracer,® and Smith and Douglas.® For the purpose of this book, symbiosis means the
permanant living together of two dissimilar organisms involving exchange of metabolites
between the symbionts.

Cyanobacteria form symbiotic associations with plants, animals (marine sponges and
echiruoid worms), nonphotosynthetic protists belonging to the group Glaucophyta, and
bacteria.® Cyanobacteria also occur in hollow shafts of hairs of polar bears.”* Among plants,
cyanobacteria form symbiotic associations with algae (diatoms), fungi (lichens), bryophytes
(liverworts, hornworts, and mosses), pteridophytes (Azolla), gymnosperms (cycads), and
angiosperms (Gunnera). Cyanobacterial-algal symbioses, together with the cyanobacterial
symbioses with animals, glaucophytes, and bacteria, are briefly addressed in this chapter.
The other symbioses are discussed in detail in the following chapters.

SYMBIOTIC CYANOBACTERIA

IN ASSOCIATION WITH PLANTS

The filamentous heterocystous cyanobacterium Richelia intracellularis occurs in the
marine pennate diatom Rhizosolenia. The cyanobiont* resembles Calothrix with a basal
heterocyst. Not all Rhizosolenia have the cyanobiont, but those which have them may contain
several filaments per cell. Some filaments have heterocysts at either end.® Although the
diatom retains its pigments, the cyanobiont is reported to be responsible for most of the

* The term cyanobiont has been used throughout this book to refer to the cyanobacterial partner in the symbiosis.
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TABLE 1
Cyanobionts of Lichens

Unicellular forms
Gloeocapsa
Gloeothece
Synechocystis
Hyella
Filamentous heterocystous forms
Calothrix
Nostoc
Scytonema
Heterocystous branched-filamentous forms
Fischerella

Note: Grouped according to cyanobacterial classi-
fication proposed by Rippka et al.'®

TABLE 2
Cyanobionts of Plant Symbioses Other Than
Lichens
Symbiosis Cyanobiont

Rhizosolenia (diatom) Richelia intracellularis®
Bryophytes Nostoc

Azolla Anabaena®

Cycads Nostoc

Gunnera Nostoc

*  According to criteria of Rippka et al., this should be
classified as Calothrix.'

®  According to criteria of Rippka et al., this should be
classified as Nostoc.'®

CO, fixation in the association.'® However, the major contribution of the cyanobiont may
be N, fixation and the transfer of fixed N to the diatom. Rhizosolenia styliformis is often
abundant in the photic zone of the North Pacific; N, fixation by the cyanobiont may be of
considerable significance in such nitrogen-poor oceanic waters.'®'2 The cyanobiont has not
been isolated in culture and its mode of entry as well as the details of the physiology and
biochemistry of this symbiosis are relatively little understood. Richelia intracellularis fila-
ments have also been observed in the diatom Hemiaulus membranaceus, but the cyanobiont
filaments are thought to persist in the diatom cell for only a few days.®

Inclusion bodies resembling thin-walled unicellular cyanobacteria, with thylakoids run-
ning at right angles to the cell wall, occur in the diatom Rhopalodia."® The cyanobiont fixes
N, in the association.'* The cyanobiont has not been isolated in culture and its precise
taxonomic characterization remains to be done.

In lichens, several cyanobacterial genera (unicellular and heterocystous filamentous)
have been reported,'* but many are as yet unconfirmed. Also, some may have to be regrouped
according to the new cyanobacterial classification proposed.'® The cyanobacterial genera
which occur in lichen symbioses with certainty are shown in Table 1. In all other plant
symbioses, the cyanobiont is a heterocystous filamentous cyanobacterium belonging to the
genus Nostoc or Anabaena (Table 2). Further details of these symbioses are given in Chapters
2 through 7.

IN ASSOCIATION WITH ANIMALS
Two groups of animals are reported to have cyanobacterial symbionts: echiruoid worms



and marine sponges. Echiruoid worm-cyanobacterial symbioses are rather cryptic. However,
occurrence of cyanobionts in the subepidermal connective tissues of two species (Ikedosoma
gogoshimense and Bonellia fuliginosa) has been reported.'” Prominant among the animal
symbionts of cyanobacteria are the marine sponges; 38 genera belonging to the groups
Calcarea and Desmospongia are known to have cyanobionts.®'® The cyanobionts belong to
the genus Aphanocapsa (unicellular) or Phormidium (filamentous nonheterocystous). They
occur, intracellularly or intercellularly, throughout the sponge tissue or in superficial tissues
only. The incidence of symbiosis is very common in sponges occurring in the tropical marine
environment and it has a fairly wide geographical distribution.®'® The distribution of cy-
anobionts in sponges is restricted to those occurring in the photic zone.
The role of cyanobacteria in such symbioses may be threefold:

Cyanobionts may protect the host sponge from damage by high light intensity.?®
The cyanobiont is photosynthetically active and transfers 5 to 12% of the fixed C
(probably as glycerol) to the host sponge.'® This transfer of fixed C has been shown
to be important for the host as evidenced by the fact that Verongia aerophoba grows
faster in light than in darkness.?'

3. In the case of at least two sponges, Theonella swinhoei and Siphonochalina taber-
nacula, the cyanobiont has been shown to fix N,.?> As in the case of diatoms, this
may be an important source of nitrogen for the sponge in the N-poor marine environ-
ment.

DN

Although the precise mechanism of cyanobiont transmission is still not known, cyano-
bionts have been observed in oocytes and nurse cells of several sponges.?® This may suggest
a direct transmission of cyanobiont in these associations.®

IN ASSOCIATION WITH BACTERIA

In addition to the cyanobacterial symbioses with various eukaryotes, there are also
instances of cyanobacterial symbioses with prokaryotes. An example of this is the cyano-
bacterial associations with certain nonphotosynthetic bacteria in which the cyanobiont is
considered to be the host.%** Nonphotosynthetic bacteria occur in mucilagenous sheaths of
the cyanobiont. The bacterial symbionts are often concentrated around the heterocysts or
the heterocysts-vegetative cell junctions. Exchange of metabolites between the symbionts,
to the mutual advantage of both, has been suggested.?* In one case (Pleurocapsa minor),
bacterial symbionts have been found to be located intracellularly.?

IN ASSOCIATION WITH NONPHOTOSYNTHETIC PROTISTS

Many nonphotosynthetic protists contain blue-green inclusion bodies in their cells. These
protists include the ameba Paulinella chromatophora and members of the Glaucophyta.?¢
The inclusion bodies are called cyanelles* and resemble unicellular cyanobacteria with a
very thin cell wall. No cyanelles have been isolated in culture so far, and it remains debatable
whether they should be considered as cyanobionts (organisms) or as organelles. Biochemical
studies on Cyanophora paradoxa indicate their cyanobacterial origin,?”-*® but their genome
size is far smaller than those in cyanobacteria and is comparable to plastids.?

Both the host and the cyanelles reproduce by binary fission, although their rates of
division may vary (as in C. paradoxa), resulting in one to eight cyanelles per host cell.*
In contrast, there are always two cyanelles per cell in P. chromatophora since the division
of the cyanelles and the host is synchronous and closely coupled. Cyanelles are photosyn-

* The term ‘‘cyanelles’’ was originally intended for all symbiotic cyanobacteria, but it is currently used specifically
for unicellular cyanobacteria-like inclusion bodies in nonphotosynthetic protists discussed above.
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TABLE 3
Classification of Symbiotic Cyanobacteria®

Characteristics

Unicellular; reproduction by binary fission

Unicellular; reproduction by multiple fission
or by both multiple fission and binary fis-
sion

Filamentous; reproduction by random tri-
chome breakage or by harmogonia forma-
tion; trichomes consist of vegetative cells
only

Filamentous; reproduction by random tri-
chome breakage, by hormogonia forma-
tion, or by akinete germination; trichomes
with heterocysts; division in one plane

Filamentous; reproduction as in section IV;

Symbiotic cyanobacterial
genera

Aphanocapsa

Gloeocapsa, Gloeothece, Sy-

" nechocystis

AphanocapsalGloeocapsa

A thin-walled unicellular cy-
anobacterium

Cyanelles

Hyella
Pleurocapsa minor

Phormidium

Anabaena
Nostoc

Scytonema, Calothrix
Richelia intracellularis
Fischerella

Symbiosis

Marine sponges
Lichens

Hair of polar bears
Diatom (Rhopalodia)

Glaucophytes and Pau-
linella

Lichen

Bacteria

Marine sponges

Azolla

Lichens, bryophytes,
cycads, and Gunnera

Lichens

Diatom (Rhizosolenia)

Lichens

trichomes with heterocysts; division in
more than one plane

*  According to criteria proposed by Rippka et al.'

thetically active and transfer up to 15% of the fixed C to the host, mainly as glucose.*
Regarding capability of nitrogen fixation, only one association has been tested so far (C.
paradoxa) and found to have no nitrogenase activity.>' However, cyanelles in C. paradoxa
do contain hydrogenase with properties similar to those in cyanobacteria.*> Fd-dependent
nitrate reductase and glutamate synthase, and glutamine synthetase activities have also been
observed in the cyanelles. It has been suggested that ammonia produced from nitrate/nitrite
reduction in the cyanelles is made available to the host.>® There is evidence to suggest that
cyanelles do not respire due to lack of the terminal oxidase (cytochrome oxidase) in their
respiratory chain.?

From the above information, it is clear that the cyanelles are heavily dependent upon
the host regarding their metabolism. This is expected, since they do not have enough genetic
information to be independent. This may explain the failure in isolating the cyanelles in
culture. Attempts to grow the host in the absence of cyanelles have also failed. Thus, each
symbiont seems to be dependent upon the other.?3!:33-33

UNIFYING CONCEPTS IN CYANOBACTERIAL SYMBIOSES

A compilation of various cyanobionts and their classification is given in Table 3. The
general properties of cyanobionts (and the interaction between the symbionts) in various
symbioses is summarized in Table 4. From these, the following trends are discernible (further
details are in the chapters that follow):

1.  The first striking thing is the range of organisms with which cyanobacteria form
associations. The range is much wider than those of other diazotrophs which form
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symbioses (€.g., Rhizobia and Frankia). This, together with the fact that cyanobacteria
combine oxygenic photosynthesis with N, fixation, indicates that cyanobacteria may
be a potential candidate for use in creating artificial diazotrophic symbioses. Further
details on artificial symbioses are provided in Chapter 8.

The range of cyanobacteria occurring in the symbioses indicates that most cyanobionts
are diazotrophic. This suggests provision of fixed N as a major role of cyanobionts
in these symbioses. Although the form in which fixed N moves from cyanobiont to
the eukaryotic partner may vary, ammonia seems to be the major compound in the
cases so far examined.

Heterocyst frequency, which is normally approximately 5% in free-living cyanobac-
teria, increases significantly in cyanobionts where the cyanobiont is in association with
a photosynthetic partner. Since heterocysts are the site of nitrogen fixation in fila-
mentous heterocystous cyanobacteria, the cyanobionts with high heterocyst frequency
carry out N, fixation at higher rates.

In several symbioses, the cyanobiont has low levels of glutamine synthetase. From
the cases examined so far, it has become apparant that two mechanisms are involved.
In some the regulation is at transcription level, while in others it is at the activity
level. Insufficient levels of glutamine synthetase in the cyanobiont results in liberation
of the newly fixed ammonia (produced during N, fixation). The distribution of the
residual glutamine synthetase in the cyanobiont is uniform between vegetative cells
and heterocysts. This is in contrast to the free-living cyanobacteria where heterocysts
contain twice the amount of glutamine synthetase present per vegetative cell (see
Chapter 2).

Cyanobionts which occur in association with heterotrophic symbionts retain their pho-
tosynthetic ability, but those in association with photosynthetic symbionts fix CO, at
low levels or not at all. In the latter case, fixed C is provided by the eukaryotic partner
to the cyanobiont. Thus, with regard to fixed C transfer, the cyanobacteria symbioses
fall into three categories: those symbioses where the cyanobiont transfers both fixed
C and fixed N to the eukaryotic partner (e.g., bipartite lichens); those symbioses where
the cyanobiont transfers only fixed N but remains self-sufficient for its fixed C re-
quirement (e.g., tripartite lichens and Azolla); and those symbioses where the cyano-
biont transfers fixed N but receives fixed C from the host because it is functionally
nonphotosynthetic (e.g., liverworts, cycads, and Gunnera).
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Chapter 2

CYANOBACTERIAL-FUNGAL SYMBIOSES: THE
CYANOLICHENS

Amar N. Rai

INTRODUCTION

Lichens are symbiotic associations between certain fungi and photosynthetic organisms
(cyanobacteria and/or algae) resulting in a stable thallus quite distinct from either of the
symbionts occurring in a free-living state. They represent an integration of the heterotrophic
metabolism of the fungal partner (mycobiont) and the autotrophic metabolism of the pho-
tosynthetic partner/partners (photobionts). There are approximately 15,000 to 20,000 known
lichen species, of which the majority have only one photobiont (bipartite lichens); however,
there are about 520 species of tripartite lichens which contain two photobionts: a green alga
(phycobiont) and a cyanobacterium (cyanobiont).'*

In this chapter only those lichens which contain cyanobacteria as photobionts (the cy-
anolichens) are discussed. For a detailed account of lichens in general, the reader is referred
to the most recent monograph on this subject.’

THE SYMBIONTS

THE MYCOBIONT

There are approximately 13,500 species of lichen-forming fungi representing nearly 20%
of all known fungal species.* The mycobiont is generally an ascomycete (about 40 genera).
However, 10 genera and 20 species of Basidiomycetes also occur as mycobionts. Some
Fungi Imperfectii and at least one phycomycetous fungus have also been reported as my-
cobionts.?

THE PHYCOBIONT

Lichens generally contain eukaryotic green algae as photobionts. Most common among
the phycobionts are Trebouxia and Pseudotrebouxia, which occur in nearly 70% of lichens.
Other common phycobionts are Coccomyxa and Myrmecia.

THE CYANOBIONT

About 8% of lichen species have cyanobacteria as photobionts. Within the lichen thallus,
cyanobionts develop extracellularly except in one case, Geosiphon pyriforme, where the cell
wall of the phycomycetous fungus is lysed and the Nostoc cells are enclosed by invagination
of the plasmalemma.®’ In bipartite lichens, the cyanobiont occurs either throughout the
thallus (Homoiomerous type lichen thallus; e.g., Collema sp.) or is restricted to a distinct
symbiont layer in the upper cortex (Heteromerous type lichen thallus; e.g., Peltigera canina).
In tripartite lichens, however, the cyanobiont occurs in special structures called cephalodia.
Cephalodia may be external, occurring on the outer surface of the thallus (e.g., in P.
aphthosa), or internal, occurring within the thallus (e.g., in Lobaria pulmonaria). Occa-
sionally, the cyanobiont and the phycobiont both develop as discrete layers within the main
thallus (e.g., in Solorina crocea). The cyanobiont is also termed the secondary photobiont
and the phycobiont the primary photobiont in tripartite lichens.

There has been a great deal of uncertainty about the cyanobacterial genera occurring in
lichen symbioses. This has been mainly due to the fact that most reports are based on only



