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Preface

Aim of this book

This book originated as lecture notes for a course in regression and multilevel mod-
eling, offered by the statistics department at Columbia University and attended
by graduate students and postdoctoral researchers in social sciences (political sci-
ence, economics, psychology, education, business, social work, and public health)
and statistics. The prerequisite is statistics up to and including an introduction to
multiple regression.

Advanced mathematics is not assumed—it is important to understand the linear
model in regression, but it is not necessary to follow the matrix algebra in the
derivation of least squares computations. It is useful to be familiar with exponents
and logarithms, especially when working with generalized linear models.

After completing Part 1 of this book, you should be able to fit classical linear and
generalized linear regression models—and do more with these models than simply
look at their coefficients and their statistical significance. Applied goals include
causal inference, prediction, comparison, and data description. After completing
Part 2, you should be able to fit regression models for multilevel data. Part 3
takes you from data collection, through model understanding (looking at a table of
estimated coefficients is usually not enough), to model checking and missing data.
The appendixes include some reference materials on key tips, statistical graphics,
and software for model fitting.

What you should be able to do after reading this book and working through the
examples

This text is structured through models and examples, with the intention that after
each chapter you should have certain skills in fitting, understanding, and displaying
models:

e Part 1A: Fit, understand, and graph classical regressions and generalized linear
models.

— Chapter 3: Fit linear regressions and be able to interpret and display estimated
coeflicients.

— Chapter 4: Build linear regression models by transforming and combining
variables.

— Chapter 5: Fit, understand, and display logistic regression models for binary
data.

— Chapter 6: Fit, understand, and display generalized linear models, including
Poisson regression with overdispersion and ordered logit and probit models.

e Part 1B: Use regression to learn about quantities of substantive interest (not
just regression coeflicients).

— Chapter 7: Simulate probability models and uncertainty about inferences and
predictions.

Xix
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Chapter 8: Check model fits using fake-data simulation and predictive simu-
lation.

Chapter 9: Understand assumptions underlying causal inference. Set up re-
gressions for causal inference and understand the challenges that arise.

Chapter 10: Understand the assumptions underlying propensity score match-
ing, instrumental variables, and other techniques to perform causal inference
when simple regression is not enough. Be able to use these when appropriate.

Part 2A: Understand and graph multilevel models.

Chapter 11: Understand multilevel data structures and models as generaliza-
tions of classical regression.

Chapter 12: Understand and graph simple varying-intercept regressions and
interpret as partial-pooling estimates.

Chapter 13: Understand and graph multilevel linear models with varying in-
tercepts and slopes, non-nested structures, and other complications.

Chapter 14: Understand and graph multilevel logistic models.

Chapter 15: Understand and graph multilevel overdispersed Poisson, ordered
logit and probit, and other generalized linear models.

Part 2B: Fit multilevel models using the software packages R and Bugs.

Chapter 16: Fit varying-intercept regressions and understand the basics of
Bugs. Check your programming using fake-data simulation.

Chapter 17: Use Bugs to fit various models from Part 2A.

Chapter 18: Understand Bayesian inference as a generalization of least squares
and maximum likelihood. Use the Gibbs sampler to fit multilevel models.

Chapter 19: Use redundant parameterizations to speed the convergence of the
Gibbs sampler.

Part 3:

Chapter 20: Perform sample size and power calculations for classical and hier-
archical models: standard-error formulas for basic calculations and fake-data
simulation for harder problems.

Chapter 21: Calculate and understand contrasts, explained variance, partial
pooling coefficients, and other summaries of fitted multilevel models.

Chapter 22: Use the ideas of analysis of variance to summarize fitted multilevel
models; use multilevel models to perform analysis of variance.

Chapter 23: Use multilevel models in causal inference.
Chapter 24: Check the fit of models using predictive simulation.

Chapter 25: Use regression to impute missing data in multivariate datasets.

In summary, you should be able to fit, graph, and understand classical and mul-
tilevel linear and generalized linear models and to use these model fits to make
predictions and inferences about quantities of interest, including causal treatment
effects.
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Data for the examples and homework assignments and other resources for
teaching and learning

The website www.stat.columbia.edu/~gelman/arm/ contains datasets used in the
examples and homework problems of the book, as well as sample computer code.
The website also includes some tips for teaching regression and multilevel modeling
through class participation rather than lecturing. We plan to update these tips
based on feedback from instructors and students; please send your comments and
suggestions to gelman@stat.columbia.edu.

Outline of a course

When teaching a course based on this book, we recommend starting with a self-
contained review of linear regression, logistic regression, and generalized linear mod-
els, focusing not on the mathematics but on understanding these methods and im-
plementing them in a reasonable way. This is also a convenient way to introduce the
statistical language R, which we use throughout for modeling, computation, and
graphics. One thing that will probably be new to the reader is the use of random
simulations to summarize inferences and predictions.

We then introduce multilevel models in the simplest case of nested linear models,
fitting in the Bayesian modeling language Bugs and examining the results in R.
Key concepts covered at this point are partial pooling, variance components, prior
distributions, identifiability, and the interpretation of regression coefficients at dif-
ferent levels of the hierarchy. We follow with non-nested models, multilevel logistic
regression, and other multilevel generalized linear models.

Next we detail the steps of fitting models in Bugs and give practical tips for repa-
rameterizing a model to make it converge faster and additional tips on debugging.
We also present a brief review of Bayesian inference and computation. Once the
student is able to fit multilevel models, we move in the final weeks of the class to
the final part of the book, which covers more advanced issues in data collection,
model understanding, and model checking.

As we show throughout, multilevel modeling fits into a view of statistics that
unifies substantive modeling with accurate data fitting, and graphical methods are
crucial both for seeing unanticipated features in the data and for understanding the
implications of fitted models.
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