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Preface

This book was conceived to explain to students why my introduc-
tory course in cartography pays little attention to drafting maps
with pen and ink. Many undergraduate students have heard that
people skilled in drawing maps have found jobs even in tight
recessions, and they become worried when laboratory exercises
focus on critiquing design and using computers rather than inking
lines and lettering labels. For these readers the book should offer
insight on the extent to which computers and other electronic
technology will alter the form of the map, increase map use, and
reduce the skill and training required to obtain a decent-looking,
convincing cartographic display. Because of what I call the Elec-
tronic Transition in Cartography, the ability merely to plot a “good
looking” map will become as commonplace as the ability to type
a “good looking” letter. The good student ought not be discour-
aged by a lack of drawing ability, and the forward-looking student
must plan for change and appreciate the role in mapping of public
policy and management as well as design. Cartography, after all,
is no more drafting than journalism is typing or chemistry is
cooking.

In these essays I explore the changes that electronic technology
has made, is making, and probably will make in all principal
phases of mapping and map use: navigation, surveying, land in-
formation systems, decision support systems, and map publish-
ing. I examine previous technological transitions to assess the
extent to which significant inventions can radically transform the
content, appearance, use, and worth of maps. Cartography’s Elec-
tronic Transition will render the map as much the outcome of a
political process as it traditionally has been the product of explo-
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ration and craftsmanship. The cartographer, the geographer, the
social scientist interested in regional patterns, and the earth scien-
tist must be aware of the complex linkages among the many pro-
ducers, distributors, and users of geographic information. This
book is intended to provide much of the general technical back-
ground needed to appreciate the range of problems that mapping
policy ultimately must confront.

The book should also interest educators and humanists. It pre-
dicts that the digital map will replace the paper map as the prin-
cipal medium of cartographic storage and analysis, and it fore-
casts an era in which the immediate user rather than a distant map
author/publisher will compose most cartographic displays. Yet it
also recognizes that modern telecommunications could foster an
increased appreciation and use of maps by journalists and geog-
raphers, and thus expand the market for cogent, well-planned
presentational cartography. But whether an increased exploitation
of the map will serve knowledge and understanding more than
hype and glitter is uncertain, for without a graphically literate and
geographically astute public, maps may become little more than
pleasurable icons employed to seduce and entertain rather than to
inform and enlighten.

At a time of increased concern for human survival, parts of this
book might anger some readers, as they did one reader of the
manuscript who was alienated by my frequent and sometimes
enthusiastic mention of military contributions to cartographic in-
novation. But whatever our politics and social conscience, we
cannot deny the strong historical bond between map and soldier,
nor can we dispute that much of the present digital cartographic
effort is inspired or sustained by a concern for national defense. I
cannot convincingly explain and condemn the cruise missile in
the same breath, and I choose not to weave into these chapters the
uncertain and highly pessimistic threads of my personal doubts
about the ability of the world’s governments to resist the tempta-
tions and threats of nuclear war.

I owe several people a debt of gratitude. Guthrie Birkhead,
Dean of the Maxwell School of Citizenship and Public Affairs at
Syracuse University, granted me a semester leave to plan and
organize this book. Many colleagues graciously read and pro-
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vided helpful comments on early drafts of individual chapters:
Gregory Bass, Lee Bender, John Bossler, Vinton Cerf, Richard
Dahlberg, Andrew Douglas, John Jensen, Jon Leverenz, Robert
McMaster, Judy Olson, Timothy Petersen, George Schnell, An-
thony Williams, and David Woodward. Michael Kirchoff, Mau-
reen Devey, Andrew Bratton, Michelle Kermes, Ann Perry, Mar-
cia Harrington, Sean Cassidy, David Flinn, and Janet Saxon at the
Syracuse University Cartographic Laboratory prepared the art-
work for most of the illustrations. Michael Peterson, Joel Morri-
son, Jon Kimerling, and Barbara Petchenik provided useful sug-
gestions on the complete manuscript. David Woodward was a
source of much appreciated encouragement and counsel. My wife
Margaret gave me the tolerance and nourishment that makes writ-
ing both possible and purposeful.
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