OXFORD

Data-Driven
Modeling & Scientific

Computation

Methods for Complex Systems & Big Data

Methods for Complex Systems & Big Data

J. NATHAN KUTZ

Department of Applied Mathematics
University of Washington

EaF =N e ,,,','71
;ﬁ' fi)\‘: SRt
—gee,

OXFORD

UNIVERSITY PRESS

OXFORD

UNIVERSITY PRESS

Great Clarendon Street, Oxford, OX2 6DP,
United Kingdom
Oxford University Press is a department of the University of Oxford.
It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide. Oxford is a registered trade mark of
Oxford University Press in the UK and in certain other countries

© J. Nathan Kutz 2013
The moral rights of the author have been asserted

First Edition published in 2013
Impression: 1

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, without the
prior permission in writing of Oxford University Press, or as expressly permitted
by law, by licence or under terms agreed with the appropriate reprographics
rights organization. Enquiries concerning reproduction outside the scope of the
above should be sent to the Rights Department, Oxford University Press, at the
address above

You must not circulate this work in any other form
and you must impose this same condition on any acquirer

Published in the United States of America by Oxford University Press
198 Madison Avenue, New York, NY 10016, United States of America

British Library Cataloguing in Publication Data
Data available
Library of Congress Control Number: 2013937977

ISBN 978-0-19-966033-9 (hbk.)
ISBN 978-0-19-966034-6 (pbk.)

Printed and bound by
CPI Group (UK) Ltd, Croydon, CR0O 4YY

Links to third party websites are provided by Oxford in good faith and
for information only. Oxford disclaims any responsibility for the materials
contained in any third party website referenced in this work.

Dedication

For Kristy, Lauren and Katie

The idea of the first part of this book began as a series of conversations with Dave Muraki. It
then grew into the primary set of notes for a scientific computing course whose ambition was to
provide a truly versatile and useful course for students in the engineering, biological and phys-
ical sciences. And over the last couple of years, the book expanded to included methods for data
analysis, thus bolstering the intellectual scope of the book significantly. Unbeknownst to them,
much of the data analysis portion of the book was heavily inspired by the fantastic works of
Emmanuel Candés, Yannis Kevrekidis and Clancy Rowley and various conversations I had with
each of them. I've also benefitted greatly from early discussions with James Rossmanith, and with
implementation ideas with Peter Blossey and Sorin Mitran; and more recently on dimension-
ality reduction methods with Steven Brunton, Edwin Ding, Joshua Proctor, Peter Schmid, Eli
Shlizerman, Jonathan Tu and Matthew Williams. Leslie Butson, Sarah Hewitt and Jennifer O’Neil
have been very helpful in editing the book so that it is more readable, useful and error-free. A
special thanks should also be given to all the many wonderful students who have provided so
much critical commentary and vital feedback for improving the delivery, style and correctness
of the book. Of course, all errors in this book are the fault of my daughters’ hamsters Fluffy and
Quickles.

Scientific computing is ubiquitous in the physical, biological and engineering sciences. Today,
proficiency with computational methods, or lack thereof, can have a major impact on a re-
searcher’s ability to effectively analyze a given problem. Although a host of numerical analysis
courses are traditionally offered in the mathematical sciences, the typical audience is the pro-
fessional mathematician. Thus the emphasis is on establishing proven techniques and working
through rigorous stability arguments, for instance. No doubt, this vision of numerical analysis is
essential and provides the basic groundwork for most numerical analysis courses and books. This
more traditional approach to the teaching of numerical methods generally requires more than
a year in coursework to achieve a level of proficiency necessary for solving practical problems
since the focus is on establishing rigor versus implementation of the methods with a high-level
programming language.

The goal of this book is to embark on a new tradition: establishing computing proficiency as
the first and foremost priority above rigorous analysis. Thus the major computational methods
established over the past few decades are considered with emphasis on their use and implement-
ation versus their rigorous analytic framework. A terse time-frame is also necessary in order to
effectively augment the education of students from a wide variety of scientific departments. The
three major techniques for solving partial differential equations are all considered: finite differ-
ences, finite elements and spectral methods. And the addition in this manuscript of data analysis
techniques represents a fairly radical departure from the standard curriculum in mathematics
and applied mathematics departments.

MATLAB has established itself as the leader in scientific computing software. The built-in al-
gorithms developed by MATLAB allow the computational focus to shift from technical details to
overall implementation and solution techniques. Heavy and repeated use is made of MATLAB’s
linear algebra packages, fast Fourier transform routines, and finite element (partial differential
equations) package. These routines are the workhorses for most solution techniques and are
treated to a large extent as blackbox operations. Of course, cursory explanations are given of
the underlying principles in any of the routines utilized, but it is largely left as reference material
in order to focus on the application of the routine. It is assumed that when necessary, one could
implement these techniques by using standard libraries from, for instance, LAPACK.

The end goal is for the student to develop a sense of confidence about implementing computa-
tional techniques. Specifically, at the end of the book, the student should be able to solve almost
any 1D, 2D or 3D problem of the elliptic, hyperbolic or parabolic type. Or at the least, they should
have a great deal of knowledge about how to solve the problem and should have enough inform-
ation and references at their disposal to circumvent any implementation difficulties. Likewise,
with the data analysis framework presented, the key concepts of statistics, time-frequency ana-
lysis and low dimensional reduction (SVD) should allow one to have an excellent starting point
for moving forward in a given problem where data plays a critical role.

Overall, the combination of methods for solving complex spatio-temporal systems along with
understanding how to integrate data into the analysis provides an excellent framework for

xiv PROLEGOMENON

integrating dynamics of complex systems with big data. This is especially true in the later chapters
(Chapters 18-23) where a clear integration of data methods and dynamics is advocated. Given
the growing importance of big data methods, it is essential that scientific computing keep pace
with some of the exciting developments in this field, especially as it relates to more traditional
scientific computing applications.

There are a number of intended audiences for this book as is shown in the division of the book

into three numerical methods parts and one applications portion. Indeed, the various parts of
the book were developed with different student audiences in mind. In what follows, the specific
target audiences are highlighted along with the portions of the book appropriate for their use.
Ultimately, this gives a roadmap on how to use this book for one’s desired ends. All portions of
the book have been heavily vetted by undergraduate and graduate students alike, thus improving
the overall readability and usefulness. What is unique about this book is the applications portion
which attempts to allow students to solve real problems of broad scientific interest. My own per-
sonal frustration with the myriad of MATLAB computing books is that many of the problems
designed or used for illustration of key concepts are fairly uninspiring and devoid of real-world
applicability. More will be said about this in the following paragraphs.

Undergraduate course in beginning scientific computing

The first part of this book reflects the topical coverage of material taught at the University of
Washington campus for freshman-sophomore level engineering and physical science students.
Given that MATLAB has become the programming language of choice in our engineering pro-
grams, the coverage begins by considering basic concepts and theoretical ideas in the context of
programming language infrastructure, Thus programming and algorithm development becomes
an integral part of developing practical routines for computing, for instance, least-square fits,
derivatives or integrals. Moreover, simple things like making nice plots, generating movies and
importing/exporting data files with MATLAB are incorporated into the pedagogical structure.
Thus Chapters 1 through 6 give a basic introduction to MATLAB, to programming infrastruc-
ture (if and for loops) and to problem solving development. In addition to these first five chapters,
Chapter 6 on differential equations is covered towards the end of the book. The ability to quickly
and efficiently solve differential equations is critical for many junior and senior level courses in the
engineering sciences such as aeronautics/astronautics (the three-body problem) or electrical en-
gineering (circuit theory). Thus the first part of this book has a well-defined, beginning scientific
computing audience.

Graduate course in scientific computing

In addition to beginning students, there is a great deal of effort in providing an educational in-
frastructure and high-level overview of scientific computing methods to graduate students (or
advanced undergraduates) from a broad range of scientific disciplines. A traditional graduate
course in numerical analysis, while extremely relevant, often is focused on the mathematical in-
frastructure versus practical implementation. Further, many numerical analysis sequences are
quite devoid of engineering, biological and physical science students. The second part of this
book, Chapters 7 through 11, provides a high-level introduction to the computational methods
used for solving differential and partial differential equations. It certainly is the case that such

Xvi HOW TO USE THIS BOOK

systems provide an underlying theoretical framework for many applications of broad scientific
interest. Thus the key elements of finite difference, spectral and finite elements are all considered.
The starting point for the graduate students is in Chapter 7 with stepping techniques for differ-
ential equations. On the one hand, one can envision skipping all of the first part of the book to
begin the graduate level treatment of scientific computing. But on the other hand, the inclusion
of Part I of this book allows graduate students to have a refresher section for simple things such
as plotting, constructing movies, importing/exporting data, or simply reviewing programming
architecture. Thus the graduate student can use the first part of this book as a reference for their
intended studies.

Graduate course in computational methods for data analysis

Parts I and II of this book offer a fairly standard treatment, although slanted heavily towards im-
plementation here, of beginning and advanced numerical methods leading to the construction of
numerical solutions of partial differential equations. In contrast, Part III of this book (Chapters 12
through 23) offers a unique perspective on data analysis methods. Indeed, one would be hard
pressed to find such a treatment in any current textbook in the mathematical sciences. The aim
of this third part is to introduce graduate students (or advanced undergraduates) in the sciences
to the burgeoning field of data analysis. This area of research is expanding at an incredible pace
in the sciences due to the proliferation of data collection in almost every field of science. The
enormous data sets routinely encountered in the sciences now certainly give enormous incentive
to their synthesis, interpretation and conjectured meaning. This portion of the book attempts to
bring together in a self-consistent fashion the key ideas from (i) statistics, (ii) time-frequency
analysis and (iii) low dimensional reductions in order to provide meaningful insight into the data
sets one is faced with in any scientific field today. This is a tremendously exciting area and much
of this part of the book is driven by intuitive examples of how the three areas (i)-(iii) can be
used in combination to give critical insight into the fundamental workings of various problems.
As with Part II of this book, access to the introductory material in Part I allows students from
various backgrounds to supplement their background where appropriate, thus making Part I an
indispensable part of the overall architecture of the book.

Computational methods reference guide

In addition to its primary use as a textbook for either a graduate or undergraduate course in
scientific computing or data analysis, the book also serves as a helpful reference guide. As a refer-
ence guide, its strength lies in either giving the appropriate high-level overview necessary along
with key pieces of MATLAB code for implementation, or the scientific applications portion of the
book provides example ideas and techniques for solving a broad class of problems. Using either
the applications or theory sections, or both in combination, provides an effective and quick way
to refresh one€’s skills and/or analytic understanding of a solutions technique. In practice, the most
common comment I hear concerning this book is that students have found them useful long after
their course work has been completed. I believe this is attributed to the low entry threshold for
obtaining both practical theoretical knowledge and key snippets of MATLAB code for use in
developing a piece of code beyond what is covered in the text. Further, since many high-level

HOW TO USE THIS BOOK Xvii

MATLAB subroutines are introduced, a person referencing the book can be assured of exposure
to techniques well beyond the simple and trivial methods that might be at first considered.

Scientific applications—Bringing it all together

The most critical aspect of this book is the scientific applications part (Chapters 24 through 26).
The philosophy here is simple: solve real problems. There is something a bit disingenuous to me
about developing sophisticated methodology and then applying it to either (i) highly contrived
examples, or (ii) greatly oversimplified problems that are constructed for theoretical/analytical
convenience. It is well understood that each of these serve their purpose in pedagogy. However,
if the aim is to make one proficient in building real code, then real problems, with all their
complexities, must be considered. The selection of problems is broad enough that an instructor
should be able to pick something of interest to themselves. Further, each problem has a well laid
out background so that the problem is developed in its appropriate context. The level of diffi-
culty of each problem increases as the problem is developed so that the same problem can serye
for undergraduates, advanced undergraduates or graduate students alike, the only difference be-
ing in where the student was asked to stop. This allows students the ability to push beyond the
basic formulation if they desire. Moreover, there is a context in which their computations are
placed, making connection to important historical problems such as the three-body problem,
quantum mechanics, 2D advection-diffusion, etc. It is hoped that such problem formulation is
much more exciting for both students and faculty alike. This is a unique way in which to think
about implementing the theoretical and computational tools learned in the book.

MATLAB (MATrix LABoratory) has become the tool of choice for the teaching of and rapid
prototyping of a myriad of problems arising in the physical, engineering and biological sciences.
As a high-level language rooted in matrix and vector mathematics, it provides an exceptional
integrated programming environment for algorithm development, data analysis, visualization
and numerical computation. Using MATLAB, you can solve technical computing problems at
a fraction of the programming effort required with traditional languages such as C, C++ or
Fortran.

The objective of this book is to provide methods for computationally solving problems, and
then to actually solve them. As such, a high-level scientific language is ideal for generating small,
yet extremely powerful algorithms. Moreover, full advantage is taken of professionally developed
algorithms that few students could match in terms of efficiency, accuracy and/or cutting-edge
relevance. Armed with such high-level program tools, rapid and significant progress can be made
in solving significant problems that arise in the sciences. Thus the focus is on solving the scientific
problem versus the algorithm implementation and its nuances in accuracy, stability and speed.

MATLAB is not free. It is developed by Mathworks Inc. based outside of Boston, MA. It is a
privately held company that today has over one million users from all walks of life and industries,
A student version is available online and/or from select bookstores, and is highly recommended,
for those studying at any institution of learning (www.mathworks.com).

Given its dominance and importance, it is only natural that there should be a MATLAB-styled
version through open source development. GNU Octave is a high-level interpreted language,
primarily intended for numerical computations. Much like MATLAB, it provides capabilities for
the numerical solution of linear and nonlinear problems, and for performing other numerical
experiments. It also provides extensive graphics capabilities for data visualization and manipula-
tion, Octave is normally used through its interactive command line interface, but it can also be
used to write noninteractive programs. The Octave language is quite similar to MATLAB so that
most programs are easily portable. Octave is free, although there is a suggested donation.

Whether it be MATLAB or Octave, a high-level interpreted language is assumed to be available
for your use in going through this book. The availability of such high-level languages is transform-
ative in one’s ability to rapidly implement and develop the sophisticated computing algorithms
developed herein. It is my view that such high-level languages let one much more clearly see the
forest through the trees.

Prolegomenon xiii
How to Use This Book xv
About MATLAB xviii

- MATLAB Introduction 3
1.1 Vectors and Matrices 3
1.2 Logic, Loops and Iterations 9
1.3 lIteration: The Newton-Raphson Method 13
1.4 Function Calls, Input/Output Interactions and Debugging 18

Plotting and Importing/Exporting Data 23
- Linear Systems 31

Direct Solution Methods for Ax = b 31
2.2 Iterative Solution Methods for Ax = b 35
2.3 Gradient (Steepest) Descent for Ax =b 39
2.4 Eigenvalues, Eigenvectors and Solvability 44
2.5 Eigenvalues and Eigenvectors for Face Recognition 49
2.6 Nonlinear Systems 56
H?urve Fitting 61
3.1 Least-Square Fitting Methods 61
3.2 Polynomial Fits and Splines 65
3.3 Data Fitting with MATLAB 69
Numerical Differentiation and Integration 77
4.1 Numerical Differentiation 77
4.2 Numerical Integration 83

4.3 Implementation of Differentiation and Integration 87

viii

5.1
5.2
5.3
5.4
5.5

6.1
6.2
6.3

71
7.2
e
7.4
7.5
7.6
7.7
7.8

8.1
8.2
8.3
8.4
8.5

9.1
9.2

CONTENTS

Basic Optimization 93
Unconstrained Optimization (Derivative-Free Methods) 93
Unconstrained Optimization (Derivative Methods) 99
Linear Programming 105
Simplex Method 110
Genetic Algorithms 13

a Visualization 19
Customizing Plots and Basic 2D Plotting 19
More 2D and 3D Plotting 125
Movies and Animations 131

'PART Il Differential and Partial Differential Equations

Initial and Boundary Value Problems of Differential Equations 137
Initial Value Problems: Euler, Runge—Kutta and Adams Methods 137
Error Analysis for Time-Stepping Routines 144
Advanced Time-Stepping Algorithms 149
Boundary Value Problems: The Shooting Method 153
Implementation of Shooting and Convergence Studies 160
Boundary Value Problems: Direct Solve and Relaxation 164
Implementing MATLAB for Boundary Value Problems 167
Linear Operators and Computing Spectra 172

n Finite Difference Methods 180
Finite Difference Discretization 180
Advanced Iterative Solution Methods for Ax = b 186
Fast Poisson Solvers: The Fourier Transform 186
Comparison of Solution Techniques for Ax = b: Rules of Thumb 190
Overcoming Computational Difficulties 195

nTime and Space Stepping Schemes: Method of Lines 200
Basic Time-Stepping Schemes 200
Time-Stepping Schemes: Explicit and Implicit Methods 205
Stability Analysis 209

93

CONTENTS ix

9.4 Comparison of Time-Stepping Schemes 213
9.5 Operator Splitting Techniques 216
9.6 Optimizing Computational Performance: Rules of Thumb 219
L'} Spectral Methods 225
10.1 Fast Fourier Transforms and Cosine/Sine Transform 225
10.2 Chebychev Polynomials and Transform 229
10.3 Spectral Method Implementation 233
10.4 Pseudo-Spectral Techniques with Filtering 235
10.5 Boundary Conditions and the Chebychev Transform 240
10.6 Implementing the Chebychev Transform 244
10.7 Computing Spectra: The Floquet-Fourier—Hill Method 249
nﬁnite Element Methods 256
1.1 Finite Element Basis 256
11.2 Discretizing with Finite Elements and Boundaries 261
11.3 MATLAB for Partial Differential Equations 266
11.4 MATLAB Partial Differential Equations Toolbox 271
PART Il Computational Methods for Data Analysis
|PAN Statistical Methods and Their Applications 279
12.1 Basic Probability Concepts 279
12.2 Random Variables and Statistical Concepts 286
12.3 Hypothesis Testing and Statistical Significance 294
K} Time-Frequency Analysis: Fourier Transforms and Wavelets 301
13.1 Basics of Fourier Series and the Fourier Transform 301
13.2 FFT Application: Radar Detection and Filtering 308
13.3 FFT Application: Radar Detection and Averaging 316
13.4 Time-Frequency Analysis: Windowed Fourier Transforms 322
13.5 Time-Frequency Analysis and Wavelets 328
13.6 Multi-Resolution Analysis and the Wavelet Basis 335
13.7 Spectrograms and the Gabor Transform in MATLAB 340
13.8 MATLAB Filter Design and Wavelet Toolboxes 346

X CONTENTS

mge Processing and Analysis

358

14.1 Basic Concepts and Analysis of Images 358
14.2 Linear Filtering for Image Denoising 364
14.3 Diffusion and Image Processing 369
|[EY Linear Algebra and Singular Value Decomposition 376
15.1 Basics of the Singular Value Decomposition (SVD) 376
15.2 The SVD in Broader Context 381
15.3 Introduction to Principal Component Analysis (PCA) 387
15.4 Principal Components, Diagonalization and SVD 391
15.5 Principal Components and Proper Orthogonal Modes 395
15.6 Robust PCA 403
[} Independent Component Analysis 412
16.1 The Concept of Independent Components 412
16.2 Image Separation Problem 419
16.3 Image Separation and MATLAB 424
Wmage Recognition: Basics of Machine Learning 431
17.1 Recognizing Dogs and Cats 431
17.2 The SVD and Linear Discrimination Analysis 436
17.3 Implementing Cat/Dog Recognition in MATLAB 445
[L: W Basics of Compressed Sensing 449
18.1 Beyond Least-Square Fitting: The L' Norm 449
18.2 Signal Reconstruction and Circumventing Nyquist 456
18.3 Data (Image) Reconstruction from Sparse Sampling 464
m Dimensionality Reduction for Partial Differential Equations 472
19.1 Modal Expansion Techniques for PDEs 472
19.2 PDE Dynamics in the Right (Best) Basis 478
19.3 Global Normal Forms of Bifurcation Structures in PDEs 482
19.4 The POD Method and Symmetries/Invariances 492
19.5 POD Using Robust PCA 499

CONTENTS xi
PAVE Dynamic Mode Decomposition 506
20.1 Theory of Dynamic Mode Decomposition (DMD) 506
20.2 Dynamics of DMD Versus POD 510
20.3 Applications of DMD 515
PAN Data Assimilation Methods 521
21.1 Theory of Data Assimilation 521
21.2 Data Assimilation, Sampling and Kalman Filtering 526
21.3 Data Assimilation for the Lorenz Equation 529
p¥ A Equation-Free Modeling 537
22.1 Multi-Scale Physics: An Equation-Free Approach 537
22.2 Lifting and Restricting in Equation-Free Computing 542
22.3 Equation-Free Space-Time Dynamics 547
Complex Dynamical Systems: Combining Dimensionality Reduction,
Compressive Sensing and Machine Learning 551
23.1 Combining Data Methods for Complex Systems 551
23.2 Implementing a Dynamical Systems Library 556
23.3 Flow Around a Cylinder: A Prototypical Example 564
PART IV Scientific Applications :
pL: Y Applications of Differential Equations and Boundary Value Problems 573
24.1 Neuroscience and the Hodgkin—Huxley Model 573
24.2 Celestial Mechanics and the Three-Body Problem 577
24.3 Atmospheric Motion and the Lorenz Equations 581
24.4 Quantum Mechanics 585
24.5 Electromagnetic Waveguides 588
EApplications of Partial Differential Equations 590
25.1 The Wave Equation 590
25.2 Mode-Locked Lasers 593

25.3 Bose-Einstein Condensates

600

xii CONTENTS

25.4 Advection-Diffusion and Atmospheric Dynamics 604
25.5 Introduction to Reaction-Diffusion Systems 611
25.6 Steady State Flow Over an Airfoil 616

pAY Applications of Data Analysis 620
26.1 Analyzing Music Scores and the Gabor Transform 620
26.2 Image Denoising through Filtering and Diffusion 622
26.3 Oscillating Mass and Dimensionality Reduction 625
26.4 Music Genre Identification 626
References 629
Index of MATLAB Commands 634
Index 636

