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Preface

This book presents a quantum-theoretical consideration of some important and
interesting processes occurring in the presence of intense electromagnetic fields
in both the quasiclassical and essentially quantum regions of an electron motion.
These processes must be investigated using “the exact solutions method” of
relativistic wave equations in external electromagnetic fields. This method
enables one to study different non-linear (in external field strengths squared)
effects, for which the conventional treatments, namely, by the methods of pertur-
bation theory, are hardly applicable; it may be particularly useful in studying
problems analytically.

For studying the main thermal properties of a relativistic electron gas in a
quantizing magnetic field the powerful method of Mellin’s transformations (MT)
is applied; it appears to open highly promising prospects in the physics of charged
particles, and other related areas. I believe that methods applied in the book will
be useful for undergraduate students, graduate students and scientific workers
who specialize in the field of theoretical physics.

In writing this book the aim was to give special consideration to some impor-
tant physical effects that may occur when the interactions of electrons with exter-
nal electromagnetic fields are strong enough and in such cases the methods of
perturbation theory are hardly applicable to study such effects. The use of “the
exact solutions method™ to solve various particle-interaction problems enables
one not only to describe them as precisely as possible but also to see several
important heretofore unknown features of the effects.

The considered effects are interesting in their own right. It is also important to
know properties of the vacuum and matter under extreme conditions in connec-
tion with various attempts to formulate a theory of astrophysical objects sur-
rounded by superstrong magnetic fields. Theoretical description of some of the
effects observed under such conditions and comparison of the obtained results
with astrophysical investigations make it possible to verify conclusions of the
charged particle interaction theory in strong electromagnetic fields. This verifica-
tion is rather interesting because the laboratory realization of such superstrong
fields is not yet possible. In recent years, there has been much interest in solid
state physics, investigations of quantum processes with electrons in quantizing
(electron motion) magnetic fields.

The book is mainly based on calculations and works of myself and my col-
leagues. I have tried to present the material in such a manner that readers could
carry out (or repeat) corresponding calculations using only the book. This is why
the bibliography is by no means complete: it should be used as material that is
necessary for understanding the problems considered. Only the best known

vii



viii Preface

monographs, textbooks and papers that deal closely with the problems discussed
have been cited. I offer my apologies to authors of papers concerning the prob-
lems considered in this book whose works have not been cited for the above rea-
son. A book, Electrons in a Strong Magnetic Field, appeared in a Russian edition
(Energoatomizdat) in 1988. This book is not merely a mechanical translation in
English of that earlier book. All chapters of Electrons in a Strong Magnetic Field
have been essentially revised, and many original materials have been included in
this book.

For the convenience of readers all chapters of the book are introduced with
brief” abstracts, introductions to the problems, and (sometimes) conclusions.
I would like to express my gratitude to Dr O. Dorofeyev, and Dr G. Chizhov for
their assistance and for many useful discussions during the writing of the book.
Their valuable remarks and suggestions were always helpful. Dr O. Dorofeyev
also made some numerical calculations (using a computer) which enabled a num-
ber of figures to be plotted. I would like to thank Prof. V.N. Rodionov who kind-
ly agreed to write Chapter 9.

I would also like to thank Dr O. Dorofeyev and Dr G. Chizhov for their assis-
tance in preparing the manuscript for publication.



Notations and Metric

The Metric we employ yields the following expression for the scalar (dot) prod-
uct of two four-vectors

(kx) =k - x = kot = K0 — k'x! — K27 - k3

Four-vectors k, are written in light face type, three-vectors k are written in
black face tape. The normal three-space components of a vector are the con-
travariant components of the four-vector

k= (k" I, k) = (k. k. k).
The scalar product of vectors a and b is written as
a-b=ab" +ah?+d'bh?

and the vector (cross) product is written by (a x b).
The product of the Dirac matrices 7y, and four-vector a* is designed as

v a= ya,=d.

The Greek indices and the Latin indices run through the values 0, 1, 2, 3, and
1, 2, 3, respectively.

As a rule we employ a system of units in which the Dirac (action) constant /
and the velocity of light ¢ are equal to zero, except when specific units must be
attached to a result.

We will generally use these notations: o = ¢? — for the fine-structure constant,
E and € — for the energy of particles, E — for the electric field strength, H and
B — for the magnetic field strength, or for the magnetic field induction, ¢ = —|e|
— for the electric charge. and m for the mass of an electron.
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CHAPTER 1

Semiclassical Spin Effects in Strong Coulomb
and Magnetic Fields

Abstract

A new interpretation of the well-known semiclassical phenomenon discovered by
A.Sokolov and I.Ternov, “the radiative polarization” (or “the self-polarization™) of
electrons and positrons due to synchrotron radiation, is proposed. Special
consideration is given to the physical nature of this important (for high energy
physics) phenomenon from the point of view of quantum electrodynamics. The
possibility that radiative corrections in electron energy may produce this effect is
investigated. The electron—positron pair production by the Coulomb field of heavy
nuclei located in a superstrong magnetic field is studied in detail. It is shown that, in
the presence of a superstrong magnetic field and when Z_ |e| (where Z_ |e| is the
critical electric charge of a nucleus) approximately Z positrons are created, which are
polarized along the magnetic induction vector, and that the vacuum electron shell
formed has a small magnetic moment. Thus, in the case under discussion, the
vacuum of quantum electrodynamics must have a macroscopic electric charge as well
as a macroscopic magnetic moment. New and very interesting peculiarities reveal
themselves due to the screening of the Coulomb field of the nucleus by the electron
shell formed, in particular, the distribution of the vacuum (electric) charge in
ultraheavy nuclei located in a superstrong magnetic field. A relativistic analog to the
Thomas—Fermi equation in the presence of a superstrong magnetic field is deduced
to describe the distribution of electrons in atoms as well as the charge distribution in
the vacuum electron shell of nuclei.

1. RADIATIVE POLARIZATION OF AN ELECTRON IN
MAGNETIC FIELDS

1.1. Radiative Polarization of Electrons

In our opinion there occurs at least one interesting effect in the semiclassical
region of electron motion that is very important for high-energy physics.
This effect, predicted by A.Sokolov and I.Ternov in 1963, which they called
the “self-polarization effect” of electrons, is due to the response reaction of



2 SEMICLASSICAL SPIN EFFECTS

photon emission by electrons moving in a uniform constant magnetic field.
It was subsequently confirmed by theoretical studies of Bayer (1967) and
Schwinger (1975). A large number of experiments were carried out in
France, Italy, Russia, Germany, and the USA. Their results were mainly
consistent with theoretical predictions. We would like to give attention to
this important physical phenomenon, with an emphasis on its quantum
electrodynamical origin.
The quantum state of a free electron can be described by the function

1
Y, =—F1Uu exp(—ipx), (1.1)
p (2E)l/2 P

where E is the energy of an electron. The plane wave amplitude u pisa
spinor playing the role of the spin wave function, p is the four-dimensional
momentum. It is known [2, 14 17, 116, 117, 120] that the spin electron can
be characterized by the spin (pseudovector) operator ¢, whose space-like
components in turn are determined by the (pseudovector) . However, the
spin pseudovector for the Dirac equation is not an integral of motion and
this does not enable one to use its eigenvalues together with the Hamiltonian
ones. In other words these operators do not have common wave functions
and therefore the spin projection of an electron in some arbitrary direction
(for example along the OZ axis) cannot have a definite value at given three-
dimensional momentum p. This follows from the Hamiltonian of the Dirac
electron

H=(a-p)+p3m. (1.2)

Here m is the mass of an electron (it is well to remember that o, o and pj
here are the Dirac four-by-four matrices), which with given momentum p
does not commute with the matrix operator o,. Nevertheless the
Hamiltonian commutes with the matrix (#-o) in which n= p/| p|. Hence
the spin projection of the electron in the direction of electron motion is
conserved. This is the electron helicity.

For solving physical problems we need to find the Dirac equation
solutions as functions of all quantum numbers of the conserved operators.
There are four functionally-independent operators and one of them describes
the electron spin. To construct a conserved spin operator we need to take
into account two more conditions. As a rule such operators are differential
operators of the first order, i.e. they are linear in the electron momentum in
the momentum representation, the momentum coefficients are the Dirac
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matrices not proportional to the unit matrix. To be more exact, these
matrices contain the vector matrix o. In the nonrelativistic approximation
spin operators must be proportional to two-column Pauli spin matrices.

Then operators constructed can be generalized for the case of electron
motion in an external electromagnetic field. This may be done by means the
“principle of minimum electromagnetic interaction”. For this we need to
replace the four-momentum operator p by the generalized four-momentum
operator P as follows

Pt =pH—edl . (1.3)

It is as well to note that, after substitution of P* for p* into the Dirac
equation, the symmetry of the Hamiltonian, which now describes an electron
in the presence of external fields, may be broken. It will occur in the case in
which the four-potential of the external field 4., depends on any spatial
coordinates or time, for which reason only a single component of the spin
operator may remain an integral of motion in the presence of a given
electromagnetic field.

The main theoretical conclusion was formulated in [115] for a bunch of
electrons because it was made on the basis of solutions of kinetic equations.
The self-polarization effect for many electrons is that a bunch of electrons
moving in an external uniform magnetic field for a long time must be
partially polarized. It is extremely important that the energy of electrons be
kept constant for the so-called polarization time. Since this time is long,
observation of the effect under consideration is possible only in storage
rings.

There appears one more question, about a bunch in which there is only
a single electron. Put another way, we want to study the behavior of the
electron spin but not the bunch polarization. This problem was solved by
Bayer.

One describes the electron spin in several ways. The way used to
describe it in [115] was in terms of the z-projection of the well-known spin
operator p

. i i (1.4)
m

since it is known that it is an integral of motion in a constant uniform
magnetic field H = (0, 0, H). The operator p, characterizes the spin states
with transverse polarization when the momentum projection p, = 0.
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The probability of an emission transition from the initial state n, { to
the state n’ <n, £’ summed over all quantum numbers except for £, ' and
averaged over two possible states of photon polarization, in which quantities
of the order of xz are conserved, was found in [115, 116] in the form

YT T | 2 8% 10 3

s petfiel 5, 20 %, 06

2 8

+1+CC'§x2[1+C8_1~/5§}}, (1.5)

where e is the charge of an electron in absolute value,

2
(eF2 ") ol
L= m3 - m’

is the relativistic invariant dynamic parameter, in which F:ift is the tensor
of external electromagnetic field, p is the four-momentum of electron.
Quantities {, ' appearing in (1.5) are the eigenvalues of the p,-spin
operator normalized to unity.

The ratio of radiative transition probability at which the electron spin
orientation changes ( = —C') to that at which it is conserved (Q = (;’) is

Wg=_€l /W§=Ql = Xz, (16)

where in turn
weegr = e[ H m. (L7

It follows from formula (1.5) that the probability of quantum transition
of the electron per unit time from the state with £ =1 (the electron spin and
the vector H have the same direction) to the state with £’ = —1 (the electron
spin direction is opposite to the magnetic field strength) is greater than that
from the state £ = -1 to the state £’ =1. It will be noted that the effect is
revealed to be very small under usual conditions. The ratio of transition
probabilities with the spin-flip and without spin-flip is of the order xz,
which for typical laboratory conditions now is of order 10712, So the
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quantum transition of an electron with the spin-flip takes place
approximately 10'? times as slowly as one when £ =C'. Thus, in order for
the effect to be observable, the electron has to be returned from the final
quantum state to the initial state in some way or other but in such a manner
that its spin projection would not be changed. Besides, it is necessary to
compensate the radiative loss of electron energy by kecping the electron
energy constant for a time about 10'% 5. This is done by a high-frequency
electric field that cancels out the radiative energy loss in storage rings. It
enables one not to consider at all the quantum transitions without spin-flip
and, in what follows, to solve a more simple (but equivalent) problem of the
behavior of some two-level systems. Let us call it the “spin-system”. We do
not have complete information about this system to describe it in terms of a
definite wave function because this system may go through the transitions
due to the interaction with the second-quantized photon field but not due to
the interaction with the external (classical) electromagnetic field. Since the
probabilities of these transitions can be calculated, one knows that such a
kind of system may be described by the density matrix. It occurred to Bayer
to use the density matrix in order to describe this system [14].

Let P, be the probabilities determining the spin system in the
cigenstates with £ =+1. Then, according to nonstationary perturbation
theory, we can write the following equations

P,

—=w; 1 Py-w_ 18, 1.8
o -t 117 (1.8)
dr_

—dt—l=w_1’1Pl—w1,_1P_1. (19)

It follows from (1.8) and (1.9) that

d(P+P,y) ~0
dt o

[)1+P_1:l.

The probabilities introduced thus are the diagonal elements of the
density matrix, since, according to the definition of the density matrix, its
diagonal element p;; is the probability for the detection of the system in the
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eigenstate with given number i. The solutions of (1.8) and (1.9) have the
simple forms

Wi,-1 =(wy 1 +w_ )t

P(t) = —Ce , (1.10)
W1 +%W_p)
w_ -
PLy(t) =————  ce” Mt (1.11)
Wi-1t%W_y

It will be noted that, in the limit f>>t=(w;_, +w_l,1)_l, the solutions
(1.10) and (1.11) are independent of the initial values P, (0) and P_; (0):

P] (l >> T) = TW],_I,
P—l(’ >>‘C)=17W_1’1. (112)

The parameter T is called the polarization time. Let

P (0) = Py,
P_1(0)=1-PRg =Py, (1.13)
then
Pi(t)=w;_ —t(wy_ - Pp)e™"", (1.14)
PLy(t) =tw_y +T(w_y - Pge™"". (1.15)

The mean value of the normalized operator p, at the time f is
determined by

(. (6)y=Pi()-Py(r) (1.16)
and at ¢ >> T one can obtain [115, 116]

- Wi-1—%W-1,1 8s/§
< 1) > = =— =-0.924. 1.17
ORI —T—. 5 (1.17)
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Here

P11 =W1-1/(W1-1 +w_1,1) =0.96 (1.18)

is the probability of the detection of the spin system in the eigenstate with
i=1,and

p_i1=Wo,1 /(W11 +w_11) =0.04 (1.19)

is the probability for the spin system to be detected in the eigenstate with
i=-1.

Hence the radiative transitions of an electron in a constant magnetic
field when its energy is kept constant for the time ¢ >>t may be described
by the spin density matrix. The radiative polarization effect evidently
depends on the asymmetry of the transition probabilities w; _; and w_p ;.

1.2. On the Interpretation of the Radiative Polarization Effect

The polarization state of an electron may be defined by the four-vector a",
which coincides with the three-dimensional unit pseudovector { in the
resting system of the electron. We remind the reader that the pseudovector {
equals the mean value of the operator of the spin vector in the resting system
of an electron. One knows that the modulus of the vector § equals 1 if the
spin state of the electron is a pure one in the sense of quantum mechanics,
and it is less than 1 if this is not the case. Using the vector £ enables us, in
principle, to answer the question under discussion right away. Indeed, since
the photon emission by an electron is one of the processes described by
quantum electrodynamics, its probability must be G even (G is the parity
operator). So, if = 0 in the initial quantum state, and the modulus of the
vector ( is less than 1 for the final quantum state, then the expression for the
probability of such processes may contain terms linear in ' only as a scalar
product (¢’'-H) in which H is also a pseudovector, for example H is the
magnetic field strength.

It is known [17] that the vector { characterizes the properties of the
detector, which singles out, in fact, the spin projection of the electron in the
final quantum state. The real final spin state of the electron determined by
the vector Qf may not coincide with the state described by the vector C'.
Nevertheless, if we know the probability of a quantum process as a function
of C', we can find the polarization vector Qf. For this, let us write the total
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probability of radiative transitions of the electron with the spin-flip as a
function of the vectors € and C’

2
8 ez(‘f}) { S‘Ei(c'm, (1.20)

S —_— 1 —

where © =eH/E is the frequency of motion of the electron in a magnetic
field. One sees that the coefficient in w depends on the electron energy and
magnetic field strength but not on the vectors { and (', v is the
instantaneous velocity of the electron. It is well to emphasize that the last
formula describes the radiative polarization effect if the polarization state of
the electron is defined by the vector C but not the operator p,.

On the other hand, the matrix element squared of an arbitrary process
in quantum electrodynamics, M r; as a function of the vectors ' and Cf
must have the form

IM i ~(+¢-C5 /2.

Comparing the last formula with (1.20), we determine the vector Cf , which
characterizes the final polarization state of the electron

8J5e11

- 1.21
¢f (C) 5 JelH (1.21)

It is seen that the first term on the right hand side of formula (1.21)
characterizes the Qf vector projection in the direction of the electron motion
while the second term is the one in the magnetic field direction. The latter is
called the transverse polarization.

It is well to remember that the detector always determines the
projection of the vector Qf on the vector C'. It is of interest that, when v is
perpendicular to the vector H , the detector, which singles out the transverse
polarization of an electron, will measure the same value, equal to 0.924,
irrespective of the electron polarization in the initial quantum state. In other
words the electron polarization in the final state, when v is perpendicular to
the vector H, is always determined by the vector Cf , and the vector
projection ' on the magnetic field direction is always equal to 0.924



