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1 Fundament of Error Theory

1.1 Basic Concept of Measurement

Measurement plays a fundamental role in our modern world. In commerce, goods are priced
by volume, mass, or something length or area; services such as transportation are billed according
to quantity of material as well as according to the distance it is transported. In commercial
transactions, errors in measurement have a direct bearing on profits and costs.

In the engineering technologies, every project begins and ends with measurements. The
design of a highway or skyscraper starts with a survey; the design of a power transformer starts
with measurement of the electrical and magnetic properties of the wire, the insulation, and the
magnet core. The final product must then be tested to see if it actually measures up to its
theoretical performance.

Mathematics is a scheme for dealing with numbers and with functions, or sets of numbers.
This scheme tells us how to operate on numbers to get new numbers, and how to operate on
functions to get new functions. But mathematics itself does not tell us what these numbers or
functions mean, as far as anything physical is concerned.

Numbers and mathematical functions acquire physical meaning only when engineers and
scientists become involved. Their job is to find ways of expressing properties of the real world in
numerical form. Only then does mathematics become a practical tool.

Measurement is a process of comparison. Measurement is determination of the magnitude of a
quantity by comparison with a standard for that quantity. Quantities frequently measured include
time, Iength, area, volume, pressure, mass, force, and energy. To express a measurement, there
must be a basic unit of the quantity involved, e.g., the inch(1 in=2.54 cm) or second, and a standard
of measurement (instrument) calibrated in such units, e.g., a ruler or clock. Had we compared the
radio tower’s height to something we call a “yard”, the result of the measurement would have been
99 instead of 297. Had we compared it to something we call a “meter”, the result would have been
90.5. Had we use inch, the measurement’s numerical result would have been 3 560.

According to the differences of the measurement methods, measurement can be divided into
measurement directly and indirectly. Generally , measurement directly is a process of
determination of the magnitude of a quantity by comparison with a standard, for example, measure
length with rule, measure time with time stop, measure current with ammeter. Measurement

indirectly is a process of determination of the magnitude of a quantity through calculating with
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formula, for example, measure a volume of a ball with known its diameter, measure a resistor
value with known current and voltage.

According to the differences of the measurement conditions, measurement can be divided into
measurement with formal and uniform precision. If each measurement was done with the same
measurement condition, the measurement is called formal precision measurement. If one or part of
measurement conditions is changed in a set of measurement trials, it is uniform precision
measurement. Generally, uniform precision measurement should be avoided.

Obviously, it is just as important to specify the thing we are comparing with as it is to quote
the number itself. This is why we say that the numbers by themselves are meaningless. In the
technologies, it is absolutely essential that we have a unit associated with each number we use.
You will notice that units are specified for all numbers through this book.

We will use many different kinds of units: for example, units of distance(inches, centimeters,
feet, yards, meters, kilometers, miles, and so on) and units of time (milliseconds, seconds,
minutes, hours, days, years, etc.) . In addition, we use combinations of units, or compound units,
for some quantities: speed, for instance, may be expressed in feet per second, kilometers per hour,
miles per hour, or any of a number of other combinations. And every time we make a
measurement, we are comparing the known size of one of these units with the size of the quantity
we are measuring. Even if a comparison must be made indirectly, it is still a comparison. It is
important to keep this point in mind whenever undertaking measurements.

In 1960, 36 nations signed a treaty and created an international system of units. The entire
system is officially called “Le systéme International d'Unités” (SI), and is called the
International System in English-speaking countries. The SI is essentially the same as what we
have come to know as the metric system.

Table I .1.1 lists the seven SI base units. The S1 base units are the official international units
for the seven different kinds of physical quantities that can be measured. We can measure length,
which includes width, height, thickness, distance, and so on. We can measure time, which is
fundamentally different. We can measure mass, electric current, temperature, luminous intensity,
and amount of substance. We can measure quantities that are combinations of some of these
fundamental seven, but no one has ever encountered a measurement that cannot be referred to

these seven fundamental quantities and their base units.

Table I .1.1 The SI Base Units

Quantity Unit
length meter (m)
time second (s)
mass kilogram (kg)
electric current ampere (A)
temperature kelvin (K)
luminous intensity candela (cd)
amount of substance mole (mol)




Of course, we use many units other than the base units listed in Table I .1.1. There are many
other such defined units. Defined units are not part of the International System. Rather they have
been related to the corresponding SI units through numerical definitions.

Units that can be expressed as combinations of the SI base units are called compound units or
derived units. Compound, or derived units are units for all quantities other than length, time,
mass, electric current, temperature, luminous intensity, and amount of substance. In the
International System (SI), all such units can be expressed as a combination of some of the base

units. The derived units of the International System are listed in Appendix Table I .

1.2 Basic Concept of Measurement Error

What we have to do is examine how wrong we can allow them to be. And instead of calling
them wrong, we will talk about the measurement error (JjEiR%), and how big this error is
likely to be.

Measurement error is the difference between a computed or measured value and a true value
(HE).

Notice that we are now using the word “error” in a very special, technical sense. In the sciences
and technologies, an error is not the same thing as a mistake. Mistakes can be avoided, or at least
corrected. But errors in measurement can never be eliminated completely. The best we can do is to
try to keep the errors small enough that the result can still be used for its intended purposes.

First, we have to understand “true value” of an object in nature.

True value is consistent with the definition of a given particular quantity. The value would be
obtained by a perfect measurement or by nature indeterminate. Since we can never know the value
of any physical quantity unless we measure it, and since no measurement is absolutely accurate,
it follows that we can never know the “true value” of any physical quantity. This is why “true
value”is enclosed in quotation marks. When we make a measurement, we usually assume that there
is such a thing as a true value, yet at the same time we recognize that we will never know exactly
what this “true value” is. This severely limits the usefulness of our definition of measurement
error, for it means we can never calculate exactly what our measurement error is. So, we can
substitute “true value” with “conventional true value”. A conventional true value (ZJEEH)
is the value attributed to a particular quantity and accepted, sometimes by convention, as having an
uncertainty appropriate for a given purpose. Conventional true value is sometimes called “assigned
value” or“target value” . In measurement , theoretically value, empirical value(#£23¢{f ) and average
measurement value would be taken as conventional true value. Accordingly, the difference
between a computed or measured value and a conventional true value is called as bias (%) .

We can now make a distinction between two basic types of measurement errors—systematic
error ( %182 ) and random error (Bfi#liR%). We need to make this distinction because these



errors are handled in different ways. A systematic error remains the same change throughout a set
of measurement trials. A random error varies from trial to trial and is equally likely to be positive
or negative.

Of the two types, systematic errors are usually the more difficult to detect and account for.
Systematic errors generally originate in one of two ways:

(1) Errors of calibration. If the measuring instrument is not brought into precise agreement
with a standard, or if the standard itself is not a faithful reproduction of a primary standard, then
all readings from the instrument will be affected in the same way, giving rise to a systematic error.
For instance, any measurement of a time interval on a clock that gains time will be too large.

(2) Errors of use. If the instrument is not used under conditions identical to those prevailing
when it was calibrated, that change of conditions may affect the way the instrument responds to
the quantity being measured. Again, all the measurements in a set of trials will be affected in the
same way, and the error is systematic. For instance, if a steel tape measure was calibrated at
temperature of 20 °C but is being used at a temperature of — 10 °C, thermal contraction causes all
the measurements to come out slightly too high.

Once we know that a systematic error exists in a measurement, we can often figure how to
eliminate it, or at least how to make it small enough to neglect. Of course, discovering a systematic
error is not always easy, so it is wise to be on guard against them constantly.

What can be done to minimize systematic errors? First, it’s important to fully understand
the instrument and the physics of its operation. We should know how the instrument’s accuracy is
likely to be affected by temperature, humidity, and barometric pressure. We should know exactly
how to calibrate the instrument, and how often the instrument usually needs to be recalibrated. If
the instrument was last calibrated under conditions different from those that currently prevail, we
may have to perform a recalibration on the spot. If a recalibration is not practical, we may have to
correct our readings mathematically.

Since the range of instruments is so enormous, it is often necessary to evaluate systematic errors
on many instruments we have never encountered in formal training. To do so, we have to rely on the
manufacturer’s operating manuals. We also need to have a reasonable understanding of basic
physics, or else we can never judge which factors are likely to affect the equipment’s operation.

With systematic errors, we can sometimes (but not always) make a correction to the
measurement based on this estimate. The following example shows one way to do so.

Example: Thermal contraction of a tape measure A 30-metre steel tape measure is designed
for use at a temperature of 20.0 °C. Suppose that we need to use the tape outdoors when the
temperature is only —9.0 °C. Since the steel tape will contract in the cold, we expect a systematic
error to result. And because the scale divisions are getting closer together, we expect the measured
results to be too high.

How much contraction is there? The handbooks tell us that steel contracts by 11 millionths of
its length for each 1 °C drop in temperature. We have a total temperature drop of 29 °C, so the
total fractional contraction is

6



(29)(11x107%)=319x107°

where the notation 107 represents one one-millionth.

We can now calculate the total contraction in centimeters:

100 cm

(319x107)(30 m)(
Im

) =0.96 cm

This would be the systematic error for each 30-metre measurement, if we neglected the contraction
due to temperature.

If we have reason to believe that this is the only systematic error, we can easily correct our
measurements by subtracting this 0.96 centimeters for each measured 30 meters. In other words,
once we have taken the time to figure out how large our systematic error is, we no longer need to
have the error.

Correction for systematic error is an essential part of many measurement procedures. The
following story is a good illustration. An engineer who was working on carburetor improvements
used a dynamometer to measure an engine’s power output. He then removed the carburetor, made
some changes at the machine shop, then a few days later reinstalled the carburetor and repeated the
power measurement. To his horror, he found that the power output had dropped by 10 horsepower.
The measurement, however, was susceptible to systematic error due to changes in atmospheric
conditions, mainly barometric pressure. When the engineer corrected mathematically for these
effects, he found that the engine’s power output had actually increased by some 25 horsepower,
if he had not made the correction, he would have concluded that his carburetor alteration had hurt
the engine’s power rather than helped it.

Random errors, however, are another story. We classify errors that are not deterministic and
that may affect each data point in the experiment in a different way as random errors. These may
result from finite instrument precision and from intrinsic or external “noise”. Errors of this type
may be reduced by optimizing the experimental setup or averaging large number of repeated
measurements, but can never be completely eliminated. Although their origin may also be very
subtle, we at least have ways of dealing with them mathematically. In most measurements, only
random errors will contribute to estimates of probable error.

Random errors arise because of either uncontrolled variables or specimen variations.

(1) Uncontrolled variables. These variables are minor fluctuations in environmental or
operating conditions that cause the instrument to respond differently from one measurement trial
to the next.

(2) Specimen variations. If the measurement trial are being made on a number of presumably
“identical” samples, minor differences in chemistry, physical structure, optical properties, etc.,
between one measurement specimen and another, will give rise to random errors.

Earlier it was suggested that random errors lead to a limit in the precision of a measurement.
It was also mentioned that the effects of random errors may be reduced by repeating an experiment

many tomes and averaging the results. Understanding how this happens requires some discussion
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of “Gaussian distribution of errors” .

The Galton board, also known as a quincunx or beam machine, is a device for statistical
experiments named after English scientist Sir Francis Galton (see Figure I .1.1). It consists of an
upright board with evenly spaced nails (or pegs) driven into its upper half, where the nails are
arranged in staggered order, and a lower half divided into a number of evenly-spaced rectangular
slots. The front of the device is covered with a glass cover to allow viewing of both nails and slots.
In the middle of the upper edge, there is a funnel into which balls can be poured, where the
diameter of the balls must be much smaller than the distance between the nails. The funnel is
located precisely above the central nail of the second row so that each ball, if perfectly centered,
would fall vertically and directly onto the uppermost point of this nail's surface. The figure above
shows a variant of the board in which only the nails that can potentially be hit by a ball dropped
from the funnel are included, leading to a triangular array instead of a rectangular one.

O O O O 0O 00
. lsl§i8/sl.

Figure I .1.1 Galton Board Experiment Figure I.1.2 Normal Distribution

If the number of balls is sufficiently large, then the distribution of the heights of the ball
heaps will approximate a normal distribution.

A normal distribution in a variant x with the mean X and the standard deviation o is a
statistic distribution with probability density function.

1 _=n?

P(x)= ¢ 2 (I.1.1)

oV2n

on the domain xe(—oo, o) (see Figure I .1.2). While statisticians and mathematicians
uniformly use the term  “normal distribution”  for this distribution, physicists sometimes call it
a Gaussian distribution. The Gaussian distribution usually arises because of many smaller effects
coming together to form one overall error distribution.

From Figure I .1.3, we can know the properties of the normal distribution. () The curve is
bell shape, which has perfect bilateral symmetry — the left balances exactly with the right. @ It
is the mean because it is the arithmetic average of all the data. The expected value is the mean.
(® The area under the curve is equal to 1, in other words, the sum of the probabilities of all events
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is 1. @ The standard deviation tells one how P(x)
the data are spread out and therefore the
fatness or skinniness of the bell. &) the
probability within 1 standard deviation of the

mean is 68.3% ; the probability within 2
standard deviation of the mean is 95.4%; the
probability within 3 standard deviation of the

mean is 99.7%.

It is customary to assign the error

% e

associated with a single measurement to be —— 1. | £
) N x-30 x-20 x-0 x xta x+20 xt3o
to with a probability of 68.3%. If you make

N measurements then you may say:

Figure I.1.3 Normal Distribution and Properties

N
Mean or average: E=%Zx,. (I.1.2)
)
.. 1 & —
Standard deviation: o= —N—IZ(x,. -X) (I.1.3)
L=t
Standard deviation of the mean: L (1.1.4)

JN

Example: we are measuring the boiling point of a certain liquid. We properly calibrate our
instruments, then make a series of temperature readings. As shown in table I .1.2, the
measurements actually vary from one trial to the next despite all our care and accuracy.

Table I.1.2 Results of a Boiling Point Measurement Affected by
Small Fluctuations in Uncontrolled Variables

Trial Boiling Point/°C

1 317.51
2 317.72
3 317.22
4 317.93
5
6

317.02

317.83

The mean or average value was
N
3T, =%£=317.538

The sum of the algebraic differences between the mean T and each T; are of course zero by
definition of the mean. The standard deviation was



1.3 Instrument Error

Instrument error refers to the combined accuracy and precision of a measuring instrument,
or the difference between the actual value and the value indicated by the instrument
(error) . Measuring instruments are usually calibrated on some regular frequency against a
standard. The most rigorous standard is one maintained by a standards organization such as NIST
in the United States, or the ISO in European countries. However, in physics—precision, accuracy,
and error are computed based upon the instrument and the measurement data. Precision is to 1/2 of
the granularity of the instrument's measurement capability. Precision is limited to the number of
significant digits of measuring capability of the coarsest instrument or constant in a sequence of
measurements and computations. Error is +/— the granularity of the instrument's measurement
capability. Error magnitudes are also added together when making multiple measurements for
calculating a certain quantity. When making a calculation from a measurement to a specific
number of significant digits, rounding (if needed) must be done properly. Accuracy might be
determined by making multiple measurements of the same thing with the same instrument, and
then calculating the result with a certain type of math function, or it might mean for example, a
five pound weight could be measured on a scale and then the difference between five pounds and
the measured weight could be the accuracy. The second definition makes accuracy related to
calibration, while the first definition does not.

1. Instruments of Measuring Length
General tools used to measure length include rule, caliper, micrometer screw gauge, tape,

and so on. Main parameters and the greatest possible errors of the tools are shown in Table I .1.3.

Table I.1.3 Main Parameters and the Greatest Possible Errors of the Measuring Length Tools

Instrument Scale Division The Greatest Possible Error

150 mm 1 mm +0.10 mm
Rule 500 mm 1 mm +0.15 mm
1 000 mm 1 mm +0.20 mm
Im 1 mm +0.8 mm

Tape
2m 1 mm +1.2 mm
0.02 mm +0.02 mm

Caliper 125 mm
0.05 mm +0.05 mm
Micrometer Screw Gauge 0~5 mm 0.01 mm +0.000 4 mm
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2. Balance (Table 1.1.4and I.1.5)

Table I.1.4 Precision and the Greatest Possible Errors of the Balance

Precision 1 2 3 4 5

The Greatest Possible Errors 1x1077 2x1077 5%1077 1x10°¢ 2x10°¢

Precision 6 7 8 9 10

The Greatest Possible Errors 5%x10°¢ 1x107°% 2x10°° 5x10°° 1x10°*

Table 1.1.5 Main Parameters and the Greatest Possible Errors of the Balance

Instrument Scale Division

The Greatest Possible Error

0.08 g for scale

4 ~ 10 Balance 500 g 005¢g 0.06 g for 1/2 scale

0.04 g for 1/3 scale

1.3 mg for scale

I ~ 3 Balance 200 g 0.1 mg 1.0 mg for 1/2 scale

0.7 mg for 1/3 scale

3. Instruments of Measuring Time
Mechanical stop watch, quartz electric watch and digit millisecond watch are often used to record
time. In physic experiment, the maximum permitted errors of the stop watch and quartz electric watch

are always 0.01 s. The maximum permitted errors of the digit millisecond watch is 1 ms.

4. Instruments of Measuring Temperature

General instruments of measuring temperature in laboratory have mercury thermometer,

thermocouple and resistance thermometer, Main parameters and the greatest possible errors of the
instruments are shown in Table I .1.6.

Table I1.1.6 Main Parameters and the Greatest Possible Errors of the
Instruments of Measuring Temperature

Instrument Scale The Greatest Possible Error
Laboratory Mercury Thermometer —30~300 °C 0.05°C
Standard Mercury Thermometer 0~100°C 0.01 °C
Industry Mercury Thermometer 0~150°C 0.5°C
Standard PtRh-Pt Thermocouple 600~ 1 300 °C 0.1°C
Industry PtRh-Pt Thermocouple 600 ~ 1300 °C 0.3% + Temperature
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