-~~~
N 4

ON SOME ASPECTS OF HEIGHT
CONVERSION AND VERTICAL
DATUM UNIFICATION

GRRGHERT UL - F TR

Robert Tenzer &



CONVERSION AND VERTICAL
DATUM UNIFICATION

v PE R GEREIR B e AL HESE — 4 T B

Robert Tenzer

SSSSSSSSSSSSSSSSSSSSS

) IR hRAL




BB/ B ( CIP) £#E
R R G 4 M B AREG — BT AT ST = On Some Aspects Of
Height Conversion And Vertical Datum Unification ; 9 30/ ( i 4% ) A /K

(Tenzer,R. ) 3. —i DL : BDURS: A ,2015.7
ISBN 978-7-307-15883-2

.5 M.#E- I.ORBARSZ—E—KE L QKHb &t
HE—wrE—3e V. OP216 QP22

Hh [ AR AS P 454 CIP $dia %7 (2015) 575 110623 5

TG - R SR  TER TR Bt s fE

WRRETT: RIXKZHMAE 430012 & i)

(HLFMpf4: cbs22@ whu. edu. en [ 4} ; www. wdp. com. cn)
R« #I I Ep 554 FR A F
FFA< . 720 x 1000 1/16 Epgk .8.5 FH120 T v
RRIK 2015 457 H 25 1 kit 2015 4E 7 H 55 1 IKERRI
ISBN 978-7-307-15883-2 EH:26.00 I

WAL, AEEED; AMBEMNES, mAREREE, B5HEABHENTRRARR.



Preface

The research described herein was conducted during my
postdoctoral stay in the Department of Geomatics at the
University of New Brunswick in Canada and later continued
during my lecturing in the National School of Surveying at the
University of Otago in New Zealand and in the School of Geodesy
and Geomatics at the Wuhan University in China. Theoretical
definitions of the rigorous orthometric height and the geoid-to-
quasigeoid correction were discussed with Prof. Petr Vanicek
( University of New Brunswick ), Prof. Will E. Featherstone
( Curtin University ), Prof. Lars E. Sjoberg ( Royal Institute of
Technology) , Prof. Pavel Novak ( University of West Bohemia) ,
Dr. Christian Hirt ( Curtin University ), and Dr. Sten Claessens
( Curtin University ) . The presented numerical results were
compiled with the help of Dr. Nadim Dayoub ( University of
Newcastle upon Tyne), Dr. Robert Cunderlik ( Slovak Technical
University ) , Prof. Viliam Vatrt ( Brno University of Technology )
and my former PhD student Dr. Ahmed Abdalla ( University of
Otago). The digital density model of New Zealand was complied
with the help of Dr. Pascal Sirguey ( University of Otago) and the
advice of Dr. Mark Rattenbury ( GNS Science ). The gravity
database was kindly provided by the GNS Science New Zealand,
and the levelling and GPS data and the NZGeoid2009 official
quasigeoid model of New Zealand by the Land Information New
Zealand.



Preface

The publication of this monograph was supported by the
National Science Foundation of China ( NSFC), grant no.
41429401.



Summary

The definition and practical realization of the World Height
System ( WHS) requires the unification of several continental,
national and local geodetic vertical controls currently established
over the world. This can be done partially ( on a continental
scale) by a joint adjustment of levelling networks, while a global
realization requires finding their relation with respect to the
geoidal geopotential value W,. Another major issue, associated
with the vertical datum unification, is a choice of a height
system. Either Helmert’s orthometric heights or Molodensky'’s
normal heights are practically used in countries where the
leveiling networks were realized through geodetic spirit levelling
and gravity measurements along levelling lines. In countries,
where these gravity measurements are absent, the normal gravity
values were used to approximate the actual gravity. The vertical
datum is in this case defined in the system of normal-orthometric
heights. The conversion between different types of heights is thus
indispensible for the unification of geodetic vertical datums. The
rigorous relation between the orthometric and normal heights is
utilized in definitions of the geoid-to-quasigeoid correction in the
spatial and spectral domains presented in this work. However,
the practical application of these expressions in computing the
geoid-to-quasigeoid correction is not simple, because it requires
the knowledge of the terrain geometry, topographic density
distribution and importantly also the facilitation of advanced



Summary

numerical techniques. After reviewing the numerical models of
computing the geoid-to-quasigeoid correction in the spatial and
spectral domains, some of these practical aspects are discussed in
the context of the ( experimental) vertical datum unification in
New Zealand. The height reference system in New Zealand was
realized by several local vertical datums ( LVDs), which were
established throughout the country based on precise levelling from
tide gauges or connecting to existing levelling networks.
Moreover, the LVDs were defined in the system of the normal-
orthometric heights, because of the absence of measured gravity
values along levelling lines. Asserting that all geodetic data
available should be incorporated in the vertical datum realization,
the unification of LVDs at the North and South Islands of New
Zealand was realized in several processing steps, which
comprised the levelling network adjustment, the gravimetric geoid
and quasigeoid determination, the height conversion, the
compilation of digital terrain and density models, the analysis of
the mean dynamic topography offshore, the conversion between
permanent tidal systems, and the estimations of LVD offsets.
These procedures are summarized here and possible methods of
improving the accuracy of the height conversion are also
discussed.
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1. Introduction

For a practical realization of the geodetic vertical datum,
Helmert's (1884, 1890) orthometric heights are preferably used.
The reason is a simple computation of the mean gravity using
Poincaré-Prey’s gravity reduction while assuming a uniform
topographic density distribution, and the acceptable accuracy for
most of the regions where the levelling networks are established.
To determine the orthometric heights in the mountainous, polar
and geologically complex regions with the accuracy of a few
centimetres or even better, Helmert's definition is not sufficient.
In this case, more accurate methods for the evaluation of mean
gravity have to be applied.

A more accurate method was introduced by Niethammer
(1932, 1939). He took the terrain effect into consideration while
assuming a uniform topographic density. According to his
method, the mean value of the planar terrain correction is
evaluated as a simple average of values computed at the finite
number of points along the plumbline within the topography; see
also Baeschlin (1948) who summarized his work. Mader (1954 )
estimated the difference between Helmert and Niethammer’s
methods of ~6 cm for Hochtor (2,504 m) in the European Alps,
see also Heiskanen and Moritz ( 1967, Chapters 4-6) . Mader
(1954 ) and Ledersteger (1968) also presupposed that the terrain
correction varies linearly with depth. Based on this assumption,

the mean terrain correction is averaged from two values computed
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for points at the topographic surface and the geoid. Flury and
Rummel (2009 ), however, demonstrated that the non-linear
changes of the terrain correction could not be disregarded.
Hence, the mean terrain correction should be computed according
to Niethammer (1939) or Flury and Rummel (2009). Wirth
(1990) modified Niethammer’s method by means of computing
the topographic gravity potential ( instead of the terrain
correction) at points at the topographic surface and the geoid.

It is a well-known fact that the mean gravity within the
topography depends also on the actual topographic density
distribution. The variation of topographic density can cause
changes in orthometric height up to several decimetres ( e. g.
Vanicek et al. , 1995). The correction to Helmert’s orthometric
height due to the lateral variation of topographic density can be
evaluated using a simple formula in which the change of
orthometric height is in a linear relation to the anomalous lateral
topographic density ( Heiskanen and Moritz, 1967). Adopting this
relation, the effect of the anomalous topographic density to
Helmert’s orthometric heights was investigated, for instance, by
Allister and Featherstone (2001) and Tenzer and Vanicek (2003).

In these approximate definitions of the orthometric height,
the vertical gravity gradient generated by the mass density
distribution below the geoid surface is approximated by the linear
normal gravity gradient while disregarding the change of the
normal gravity gradient with depth. Hwang and Hsiao (2003)
estimated that this approximation causes the inaccuracy of
orthometric heights up to several centimetres in the mountainous
regions.

Tenzer and Vanicek (2003) applied the analytical downward
continuation of the observed gravity in the evaluation of the mean
gravity along the plumbline within the topography based on

2
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assuming the lateral topographic density distribution. They then
formulated the relation between Poincaré-Prey’s gravity gradient
and the analytical downward continuation of gravity. A more
accurate method for a determination of the mean gravity was
introduced by Tenzer et al. ( 2005) . They applied the
decomposition of the mean gravity into the mean normal gravity,
the mean no-topography gravity disturbance ( generated by the
mass density distribution below the geoid surface) and the mean
values of the gravitational attractions of topographic and
atmospheric masses. The mean normal gravity is evaluated
according to Somigliana-Pizzetti’s theory of the normal gravity
field (Pizzetti, 1911; Somigliana, 1929). The mean topography-
generated gravitational attraction is, in accordance with Bruns’
(1878 ) theorem, defined in terms of the difference of
gravitational potentials reckoned to the geoid and the topographic
surface, multiplied by the reciprocal value of the orthometric
height. The same principle was deduced for a definition of the
mean atmosphere-generated gravitational attraction. The mean
no-topography gravity disturbance is defined by applying Poisson’s
integral to the integral mean and solving the inverse to Dirichlet’s
boundary-value problem for the downward continuation of the no-
topography gravity disturbances in prior of computing the integral
mean value. In addition to the above theoretical developments,
numerous empirical studies have been published on the
orthometric height definition (e. g. , Ledersteger, 1955; Rapp,
1961; Krakiwsky, 1965; Strange, 1982; Siinkel, 1986;
Kao et al. , 2000; Tenzer and Vanicek, 2003; Dennis and
Featherstone, 2003).

Asserting that the topographic density and the actual vertical
gravity gradient inside the Earth could not be determined
precisely, Molodensky ( 1945, 1948 ) formulated the theory of
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normal heights. In his definition, the mean actual gravity within
the topography is replaced by the mean normal gravity between
the reference ellipsoid and telluroid ( see also Heiskanen and
Moritz, 1967, Chapter 4). The normal heights are thus defined
without any hypothesis about the topographic mass density
distribution.

The Molodensky normal heights and the Helmert orthometric
heights are the most widely-used height systems. These two types
of heights can be adopted if the levelling networks were
established based on geodetic spirit levelling and gravity
measurements along levelling lines. In some countries, however,
the gravity values along levelling lines were calculated only
approximately using the normal gravity. The vertical datum is
then defined by the normal-orthometric heights.

In recent years, a considerable effort has been undertaken to
unify a large number of existing vertical datum realizations around
the world. The vertical datum unification typically requires the
joint adjustment of interconnected levelling networks and/or the
definition of the vertical datum offset with respect to the World
Height System ( WHS ), which is defined by the geoidal
geopotential value W, . Alternatively, the wvertical datum
unification can be realized though the gravimetric determination of
the global geoid/quasigeoid model to a high accuracy and
resolution. Since the geodetic vertical systems are defined using
different types of heights (and every country adopted their own
height system specifications ), the conversion between these
types of heights is inevitable. The height conversion has been
addressed extensively in geodetic literature. An approximate
formula relating the normal and orthometric heights was given,
for instance, in Heiskanen and Moritz ( 1967, Egs. 8-103) .
Sjoberg (1995) slightly improved the classical definition by adding

4



1. Introduction

a small correction term related with the vertical derivative of the
gravity anomaly. Tenzer et al. (2005) presented numerical
procedures for a rigorous computation of the orthometric height
and formulated an accurate relation between the ( rigorous )
orthometric and normal heights. An alternative method of
computing the geoid-to-quasigeoid correction was given by
Tenzer et al. (2006) . They derived this correction based on
comparing the geoidal height and the height anomaly, both
defined by means of applying Bruns’ ( 1878) theorem. A very
similar expression for computing the geoid-to-quasigeoid
correction was given by Sjoberg (2006). The definitions of the
geoid-to-quasigeoid correction presented by Tenzer et al. (2005,
2006) and Sjoberg (2006) incorporated information on the terrain
geometry, variable topographic density and mass density
heterogeneities distributed below the geoid surface. Santos et al.
(2006) investigated the relations between various types of the
orthometric height definitions. Flury and Rummel ( 2009 )
investigated the effect of terrain geometry to the geoid-to-
quasigeoid correction. They demonstrated that the consideration
of the terrain geometry significantly reduces the values of the
geoid-to-quasigeoid correction computed using the classical
definition in which the topography is approximated by the
Bouguer plate. The results of Flury and Rummel (2009) were in a
good agreement with previous results over larger area in European
Alps presented by Marti (2005) and Siinkel et al. (1987) (see
also Hofmann-Wellenhof and Moritz,2005) Following the work of
Flury and Rummel ( 2009), Sjoberg (2010) derived a slightly
more accurate expression for the geoid-to-quasigeoid correction,
consistent with a definition of the boundary condition of physical
geodesy ( see also Sjoberg and Bagherbandi, 2012; Bagherbandi
and Tenzer, 2013). He, however, also stated that his more
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refined expression could improve the accuracy not more than
~1 em compared to the expression given by Flury and Rummel
(2009). Later, Sjoberg (2012) applied an arbitrary compensation
model in computing the topographic correction term. In
particular, he recommended using either the Helmert or isostatic
types of reductions, which provide smaller and smoother
components, more suitable for interpolation and calculation, than
the Bouguer reduction. It is worth mentioning herein that the
conversion of the normal-orthometric to normal heights was
applied, for instance, by Filmer et al. (2010) and Tenzer et al.
(2011a, 2011b).

To begin with, the fundamental definitions in the theory of
heights are here briefly recapitulated. With reference to these
definitions, the expressions for an accurate conversion between
the normal and orthometric heights (i. e. , the geoid-to-quasigeoid
correction ) are then presented in the spatial and spectral
domains. The numerical procedures of computing the geoid-to-
quasigeoid correction in the spatial domain are compared. The
computation of this correction in the spectral domain is realized
by means of applying methods for a spherical harmonic analysis
and synthesis of the gravity field and continental crustal density
structures. The geoid-to-quasigeoid correction could be computed
accurately only if the actual crustal density distribution within the
topography is known to a sufficient accuracy. Moreover, this
computation utilizes relatively complex numerical schemes which
cannot routinely be applied in practice. Therefore, the rigorous
definition of the orthometric height (and consequently the geoid-
to-quasigeoid correction ) is likely to be restricted mainly to
scientific purposes, while its use in broader, more practical
geodetic applications remains limited. Possible reasons are

discussed in the context of ( experimental ) vertical datum
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unification in New Zealand, conducted in several processing
steps. These steps comprise the levelling network adjustment, the
gravimetric geoid and quasigeoid modelling, the estimation of
LVD offsets, the conversion between the permanent tidal
systems, the analysis of systematic errors, and the conversion
between different height systems. Moreover, in order to improve
the accuracy of computing the geoid-to-quasigeoid correction,
digital terrain and density models are needed. For this purpose,
the rock density model was compiled from existing geological
maps, rock density samples, and additional geological sources.
This model is then facilitated in the gravimetric forward modelling
of variable topographic density.

The content is organized into eight chapters. The following
three chapters provide a brief summary of the coordinate systems
and transformations ( Chapter 2 ), the Earth's gravity field
( Chapter 3) and the theory of heights ( Chapter 4). The explicit
definition of the geoid-to-quasigeoid correction and the
expressions used for computing this correction in the spatial and
spectral domains are given in Chapter 5. The practical aspects of
vertical datum unification in New Zealand are discussed, and
numerical results presented in Chapter 6. The effect of variable
topographic density on gravity field quantities is investigated in
Chapter 7. The summary and major conclusions are given in
Chapter 8.



2. Coordinate Systems and Transformations

The 3-D position is defined in the Cartesian coordinate
system ( X,Y,Z ) of which the origin is identical to the mass
center of the Earth, the Z-axis pass through the Conventional
International Origin ( CIO ), and the X-axis pass through the
intersection of the Greenwich meridian plane with the equatorial
plane. Analogously, the 3-D position can be described by the
geodetic coordinates ( h,¢,A ) or the spherical coordinates ( r,
¢,A ), where ¢ and A are the geodetic latitude and longitude
respectively, ¢ is the spherical latitude, the spherical and geodetic
longitudes A are identical, r is the geocentric radius, and % is the
geodetic (ellipsoidal) height ( see Fig. 2.1).
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Fig. 2. 1 The Cartesian, geodetic and spherical coordinate systems



