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INTRODUCTION

Compactness is frequently an annoying hypothesis in differential
topology. Even when one is primarily interested in a compact manifold,
associated noncompact manifolds turn up, eg. the leaf space of a folia-
tion. Also, in technical constructions, it would be helpful to be able
to dispense with compactness. For example, if f is a diffeomorphism
of a compact manifold, X, then it is helpful in studying the dynamics
of f to regard the integers, Z, as a discrete manifold and look at the
manifold of maps, ¢(Z,X). Again it is compactness that prevents one from
noting that Hartman's Theorem is not only related to the structural stab-
ility theorem for Anosov diffeomorphisms but is in fact a corollary of the
latter because a hyperbolic linear map is an Anosov diffeomorphism of
Euclidean space.

This book describes the category of metric manifolds and metric maps
to which a broad class of theorems and constructions extend from the realm
of compact manifolds. The category is a broad one because all paracompact
manifolds admit metric structures. Metric theorems include compact
theorems because a compact manifold admits a unique metric structure and
with respect to it any smooth map with compact domain is a metric map.
Finally, there is a sufficient abundance of metric maps that, for example,
structural stability under perturbation within the family of metric maps
remains useful.

Our principal tool is the atlas. Just as most elementary construc-
tions in p.l. topology are really simplicial constructions so are most of
the elementary constructions in differential topology really atlas con-
structions building new atlases from old. In Chapter I we review such

standard constructions as products of spaces and bundles, pull back of
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bundles, etc. As well as illustrating the atlas point of view, this
develops notation for future use. We also make some easy definitions
suggested by the emphasis on atlases. For example, if G, = [Ua’ha] and
G, = [VB,gB] are two atlases then an index preserving map f: G, » G, is
a continuous map, £, of the underlying manifolds and an unnamed map of the
index sets a »> B(a) such that Ua c f-l(vﬁ(a)) for all a.

In the past this primacy of the atlas has been ignored. Where the
p.l. topologist has used triangulations the differential topologist has
used charts or, equivalently, local coordinates. This is because a
smooth manifold has a maximal atlas consisting of all smooth charts.
However, the maximal atlas lacks certain natural tools possessed by other
atlases less profligate in charts. What is needed is some control over
the size of the transition maps of the atlas. Size means norm in some
Banach space of functions. So, in Chapter II we study various function
space types.

A function space type M associates to every Banach space F and

every bounded open set U in a Banach space E a Banach space Mm(U,F)
of functions from U to F. For example, @ (U,F) consists of bounded
functions £ with the sup norm ﬂf"o = sup(]lf(x)||: x € U} and ¢ c ®» is
the subspace of continuous functions. Defining "f“L =
sup{||£(x) - £(y)|'/||x - y]|: x # y and the segment [x,y] c U}, we get .2(U,F)
the space of functions £ with max(”f"o,"f"L) = Hfﬂﬂ < . This is the
space of bounded, uniformly locally Lipschitz functions, or equivalently,
of bounded functions, Lipschitz with respect to a natural intrinsic metric
on U.

We follow Palais' "axiomatic" approach [21]. Thus, we define
f e mf(U,F) if £ is r times differentiable and its r-jet, jr(f), lies
in m(U,Jr(E:F)). k| ™ ”jrfum. m° is the P derived function space
type of M. Then, agger checking a function space property on basic

examples like ¢ and ., we verify that it is inherited as we pass from



M to M . For example, the Gluing Property states that if [Ua] is an

open cover of U and for f: U ~> F, f|Ua (3 ‘m(Ua,F) with supaf!f|0a”‘m <
then £ € M(U,F) with }!f”m = supa”flua”m.

Define the Banach space product, ﬁaFa, of a family of Banach spaces
to be the set of [xa] € naFa such that ||[xa][] = sup"xa" < », with this
sup norm. The Strong Product Property states that if fa € 'm(U,Fa) and
suP“fa!'_m < » then the product map nfa € '_m(u,ns'a) with "ﬂfa“fm = suP"fa"gy'

The Product Property is this statement for finite index sets.

Smoothness of the composition map is handled as follows. Let M, t_ml
and '_m2 be function space types with iml c 1m2 (i.e. ‘ml(U,F) c '_!pz (U,F) as

sets and || || maps M to M in an

< | H‘ml on the subset). We say that m,

-

m, way if whenever U c Fl, G c F, and V c E, are open and bounded and

2 2 8
H: G > 'm(U,El) is an m, map with Image H(g) « V for all g € G, then the

bounded linear map Qs My (V,Ez) > mwz(G,W(U,Ez)) is well defined by
nn(f) (g) = f.H(g) and ||nH" < 0*("H”m2) . The latter is a typical estimate
for our work and it means there exist constants K, n depending only on
the function space types such that !!QHH < K max(!!H”mz,l)n. For example,
that m maps ™ to M in a @® way means that if g: U > V is an M map
then g*: m(V,E) > M(U,E) is a bounded linear map well defined by
g*(£) = f.g and |lg*|| < 0*(llg])-

The Gluing and Product Properties inherit in the obvious way. For

the composition property there are two inheritance theorems: If m. maps

1
M to M in an tmz way then tmi maps :mr to {mr in an ‘mz way and if, in add-
ition, tnb c ¢ then :mi maps M to M in an mz; way.

If M satisfies a constellation of properties including mc ¢,
Gluing, Product (but not necessarily the Strong form) and M maps M to
M in a ® way then M is called a standard function space type. Being
standard is a heritible property. ~ and .2 are standard (it is to get

the Gluing Property for ., that we use the seminorm || "L rather than

its more obvious Lipschitz constant relatives) and hence so are cr and .gr.
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# also satisfies the Strong Product Property. Finally, £ maps 2 to

+ ¥ r . s r+s+1
cr in an __r_s way (and so cr+s . maps ¢ to ¢ in a ¢ way) and # maps

X
£ to s

in an ;’;s way .

In Chapter III we return to atlases and describe the category of M
metric manifolds and maps for any standard function space type . There
is also an associated category of vector bundles but we will restrict
discussion here to manifolds. All manifolds are assumed to be Hausdorff
Banach manifolds.

An atlas G = [Ua’hcx] on X is a bounded M atlas if the transition

B
k, = max (1,suplh _h

maps hah € ']Jt(hﬁ(u(1 n UB) ’Ea) (ha(ua) is open in Ea) and

; i <=+ G is an M atlas if each point x of X

has a neighborhood U such that G,|U = {Ua n U’ha'ua N U} is a bounded

Mm atlas. We then define Pg* X > [1l,o) by pa(x) = inf[kG : U is a neigh-

lu
borhood of x}. G is clearly upper semicontinuous and it follows from
the Gluing Property for m that PG is bounded on an open set U of X
iff G|U is a bounded M atlas and then kGlU

X 1is a paracompact c® manifold and G = {va’ha} is a locally finite Cr

= sup pGIU. For example, if

atlas then choosing [Ua} an open cover with ﬁa = W, it is easy to check
: r
that Gy [Ua’ha} is a o atlas.

Let G, = {Ua,ha] and G, = [VB’gB} be m atlases on X, and Xz- A

continuous map f: Xl 2 X2 is a bounded M map f: Gl -> (12 if Gl is a

2

bounded m atlas and the local representatives fBa = gafh;l €

= 5
mh (U n £ VB) ’EB) and k(£:G,,G,) = supl||f <. f is an W map

|
Ba'lfm
if it is locally a bounded m map and we then define p(f;al,az) (x) =

inf[k(f|U:0,1|U,(12) : U a neighborhood of x}. has properties analogous

PE
to L Again if G,y and 02 are obtained by shrinking locally finite c*

atlases as above and f: X, > X_ is a C* map then f: (.i1 > G, is a cr map.

1 2 2

Because M maps M to M in a ® way it is easy to show that if

f: G’l > Gz and g: (12 L a3 are M maps then g.f: Gl - (13 is m and
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bgug < (55 D)0% (o) -

gef

There are two other important functions associated with an ‘atlas
G = {Ua,ha] on X. 1G: X » (0,1]) is defined by xa(x) = sup{r < 1l: the
ball B(hax,r) e ha(Ua) for some Ua containing x}. Clearly, AG is lower
semicontinuous. For the maximal atlas on a smooth manifold AG = 1l. For
an m atlas, XG need not be bounded away from O. There is a useful
tension in trying to bound oG and l/xa simultaneously.

Finally, there is a pseudometric dG on X. An G-chain

(xl,al,...,aN,xN+1) is a sequence such that xi,xi+l € Uai and the segment
] ha.(Ua,) i=1,...,N. The length of the gG-chain is

b 8

N : ¥ g
Zi=l"haixi - haixi+1"' If x,y € X then dG(x,y) is the infinum of the

lengths of all G-chains connecting x and y. Recall that the infinum

[ha.xi’haixi+1

of the empty set is «. Allowing o as a possible value, dG is a
pseudometric. It needn't have the topology of X. 1In fact, if @ is
the maximal atlas then dG(x,y) is 0 or o according to whether x and
y do or do not lie in the same component of X. However, if mc 2 (eg.
m=ca" for r > 1) and G is an M atlas then dG is a metric with
topology that of X. In fact, a central result--from which the Metric
Theory derives its name--is the Metric Estimate which gives an explicit
local comparison between dG and the Banach space metric pulled back to
Ua by ha' An estimate of the size of the region on which the comparison
holds and the bounds in the comparison can be computed from AG and oG *
It follows that only @ paracompact manifold can admit m atlases with
mc L.

A map p: X > [1l,0) is called a bound on X. We say of two bounds
Pl and p, On X that Py dominates Py (written Py > 92) if there exist

constants K,n such that Kp; 2 py On X. > is a partial ordering with

associated equivalence relation ~. For example, the equivalence class
containing constant functions consists of all bounds p with sup g < =.

In essence, a metric structure on X is a choice of bound on X
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which dominates the growth of everything on X. In detail, an adapted m
atlas is a pair (G,p) with G an M atlas and p a bound such that

e > pge f: (Gl,pl) -> (62,52) is an M map of adapted m atlases if

£ G, > G, is an M map and P > max(pf,pzof). Two adapted m atlases
are equivalent, written (Gl,pl) - (62,92) if the following equivalent

conditions hold: (1) ~ By and (G1 U G2,pl) is an adapted m atlas.

P1
(2) The identity maps 1l: (Gl,pl) - (02,92) and 1: (62,92) > (Gl,pl) are

M maps. An M metric structure on X is an equivalence class of adapted

atlases. The atlases and bounds appearing in the structure are called
admissible atlases and bounds. The admissible bounds are a bound equi-
valence class. In practice, we need to relate the value of p near x
to the value at x. So we assume as part of the definition of a metric
structure that there exist continuous admissible bounds. A stronger
condition, which we call regularity of a metric structure, gives a uni-
form estimate as follows: A metric structure is reqular if m c » and
for some (G,p) in the metric structure there exist constants K and n
such that pleG(x,(Kp(x)n)-l) < Kg(x)n. This condition then holds for all
(G,p) in the metric structure.

It xl and x2 are M manifolds, i.e. manifolds with an M metric
structure, then f: xl -» x2 is an M map if f: (Gl,pl) > (Gz,pz) is an
M map for some, and hence any, choice of (Gi,pi) in the metric structure
of xi, i=1,2. In general a vectorfield, Riemannian metric or any sort
of gadget is called an M vectorfield, M Riemannian metric or M gadget
if its local representatives with respect to an admissible atlas are m
maps the growth of whose norm is dominated by an admissible bound. We
thus obtain the category of ™ manifolds and M maps with all the
accoutrements of the usual differentiable category.

A regular metric manifold has a natural uniform space structure. If

(G,p) is in the metric structure and m(x,y) is either max(p (x),p(y)) or
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min(p (x) ,p (y)) then the uniformity Ay is generated by the sets

{((x,y): dG(x,y) < (Km(x,y)n)-lj as K and n vary over the positive
integers. This uniformity is clearly finer than the uniformity associated
with the metric dG but the two uniformities agree on bounded sets
("bounded" always means p-bounded). Hence, the topology associated with
ux is the original topology of X. A sequence [xn} is ux Cauchy iff it is
d_ Cauchy and bounded. Uniform notions like uniform continuity, uniform
neighborhood of a set and uniform open cover are defined via ﬂx.

A regular M manifold is called semicomplete if there exist adapted
atlases (G,p) in the metric structure with p > l/xG. Such atlases (@
are then called s admissible. A semicomplete manifold is uniformly
(i.e. mx) complete- Given uniform completeness, p > l/AG for
G = {Ua,ha] SEF [Ua] is a uniform open cover of X. An M manifold with
bounded admissible bounds is called a bounded M manifold. A bounded,
semicomplete manifold is called semicompact.

Dominating l/AG is often necessary and so semicomplete manifolds are
of central importance in the theory. 1In the theory of several complex
variables such functions are already in use (eg. [18; Chap. 7]). As the
name suggests it is to semicompact manifolds that many compact results
generalize in the metric category. This usually happens when compactness
is used in the original proof to bound functions like G and l/xa and to
get uniformity with respect to metrics like dG. The resulting metric
theorems are true extensions of the original theorems because compact
manifolds admit a unique metric structure which is semicompact (cf. Chap.
VIII. Sec. 5).

In Chapter IV we apply this procedure to section spaces and manifolds
of maps. Let n: E > X be an M vector bundle with admissible atlas
(9,G) = {Ua’ha’”a]' A section s of ¢ is an M section if the (9,G)
principal parts of s, defined by ¢a(s(x)) = (ha(x),sa(ha(x))), are

locally m maps the growth of whose ™ norm is dominated by the
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admissible bounds on X. Thus, if w is a bounded M bundle we can
define the norm [s|| (»,0) _ SuPa”sa!‘m' This norm makes the vector space of
M sections of 1w, denoted M(m), into a Banach space. The topology on
m(nr) is independent of the atlas choice. If (Q,lx) My > ™, is an M
linear vector bundle map of bounded M bundles over X then the induced
map of sections §,: 'm(nl) > sm(nz) is a continuous linear map. If f: x0-> X
is an M map with xo a bounded M manifold then the pull back map

f*: M(n) > M(£*n) is also continuous.

A standard triple ('_ml,fm,'mz) is a trio of standard function space
types satisfying: (1) m ocm and mem,c 2. {2) m; maps M to M

in an 'mz way. (3) !mz satisfies the Strong Product Condition.

(;_r+s,cr,;es) and (!‘r+s+1,£r’;‘s) are standard triples.

Let (ml,{m,'mz) be a standard triple, xo be a bounded m manifold and

X be a semicomplete mi manifold satisfying a mild technical condition
(the existence of !ml exponential maps) then the set of m maps, sm(xo,x),

is a semicomplete M, manifold in a natural way. If F: X > X. is an m
e 1 1

map of semicomplete 'ml

1 manifolds admitting fml exponentials then

Bl em(xo,x) > 'm(Xo,Xl) is an 'mz map. If h: xo -> x2 is an M map of

bounded m manifolds then h¥*: gm(xz,x) -> {m(XO,X) is an 9372 map. If Xl is

a semicomplete '_mi manifold admitting mi exponentials then, since

(mi,un,fm;') is a standard triple, sm(xo,x) is an ‘m;' manifold and its tangent

bundle can be naturally identified with Tynt zm(xo,'rx) > rm(xo,x) . Under
this identification T(F,) is identified with (TF), and T(h*) is identified
with h¥*,

On composition as a function of two variables, the following result

is typical: Let X. be a semicompact £s+t+1 manifold, X

1 be a semicomplete

2
s+r+t+2
£

manifold (both admitting suitable exponential maps) and xo be a

t "
bounded ¢~ manifold (r > s + 1). Let G be open and bounded in

t . s+t ] €
e (Xy,X,). Qg (f) = £,|G defines Og: 2 (X1,X)) > 2 (G,e (X,,X,)) an
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- 5 £t s+t <
ir l map. The composition map Comp: (Xo,xl) X 2 (xl,xz) > (Xo,xz)

is an g? map. Note that smoothness of OG doesn't make sense until
manifolds of maps are defined with noncompact domains. nG is better
behaved than Comp in that its smoothness increases with r, i.e. with

the smoothness of X while that of Comp does not.

27

While the definitions of metric structures on manifolds require a
standard function space type, one can usually globalize nonstandard
function space types on sufficiently smooth semicomplete manifolds. For
example, on manifolds of finite type (see Chapter VIII) the Sobolev
function space types can be globalized essentially the same way as on
compact manifolds (eg. [30; Section 25]). While we don't consider the
Sobolev spaces further in this work, Chapter V carries out this globali-
zation for cﬁ and gz (0 < a < 1), the derived function space types
for uniformly continuous and HOlder continuous functions. cﬁ and i;
bundles, sections and maps can be defined on semicomplete ir manifolds.
Actually for these special function space types the globalization is
carried out in a more general context.

In various applications a manifold carries an auxiliary topology
coarser than the manifold topology. For example, in looking at compact
hyperbolic invariant subsets for a dynamical system, it is technically
useful to think of the subset as a discrete space (and hence a semi-
compact manifold) and regard the original topology as such an auxiliary
topology. Again, given a foliation of a compact manifold it is useful to
consider the leaf space as a nonseparable, semicompact manifold and
regard the original topology as auxiliary. These are both special cases
of leaf immersions, examined in Chapter VII. In Chapter V auxiliary
pseudometrics on a regular metric manifold (apm's) are defined as pseudo-

metrics coarser than the admissible metrics. Structures are defined with

the r-jet of everything uniformly continuous, or HOlder continuous with



XVI

respect to the apm.

Chapter VI contains a description of immersions, submersions and
transversality in the metric category. If Xo and Xl are regular M

metric manifolds f: Xo > xl is an ml immersion if Po > f*pl and there

exist admissible atlases Gy = [Ua’ha} and G, = [VB,gB] on X, and X, such

that f: GO o Gl is index preserving and for each a, the principal parts

of £, -f-ha1 are restrictions of inclusions of a factor into a

98(a)
: 1

product of Banach spaces. f is then an W map and Txf: Txxo -> fo xl

is a split injection, i.e. f is an immersion in the usual sense. If

j: E. > E. is a split injection of Banach spaces we define the splitting

0 1
constant g(j) = max(]|j||, inf(||P||: P: E; > E, with Pej = I}). If "i is
a Finsler on Ty associated with the metric structure (such Finslers are
i
defined in Chapter III and are called admissible Finslers) then || "0 and

I ”l make Txxo and T Xy into Banach spaces and so we can define

g(f) (x) = e(Txf). If, £ is an ﬁl immersion then Po > g(f) . cConversely,
if £ dis an ml map which satisfies Po ~ f*pl (such a map is called
metricly proper) and f is an immersion with Po > g(f) then £ is an nl
immersion. For submersions and transversality the situation is similar.
In each case an atlas definition is the appropriate one but tests are
developed using the classical definition and some global condition like
domination of a splitting bound like g(f). Thus, all of these notions
are global ones in the metric category rather than local as in the
differentiable category. The global conditions easy enough to manipulate
that, for example, openness of the proper metric notion of transversality
still holds. However, the density theorems of transversality theory are
lost.

While we prove that every paracompact c* manifold admits semicompact
cr structures (Chapter VIII, Section 4), this result is mainly of nega-

tive interest. I suspected the existence of finite dimensional, connected

manifolds which did not admit semicompact structures. Such a manifold
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could not occur as a leaf of foliation of a compact manifold, answering a
question of Sondow [26]. In applying the metric theory to a problem,
the mere existence of semicompact structures is not too useful because
choosing a metric structure and going to the metric category restricts
the maps, vectorfields, etc.with which one can deal to those which are
metric with respect to the chosen structure. Thus, it is of more interest
to look for metric structures naturally associated with the problem. This
is a matter of looking for associated atlases (G and estimating pa and xa.
For example, if X is a Lie group then left translates (or right
translates) of a chart about the identity form an atlas generating a
semicompact structure called the left semicompact structure (resp. the
right semicompact structure). Left invariant (resp. right invariant)
gadgets are metric with respect to this structure. The left and right
structures are usually not the same but are contained in a semicomplete
structure with admissible bound p (x) = max(ﬂAd(x)”,ﬂAd(x)_ln) where Ad
is the adjoint representation and the norm is computed using any fixed
norm on the Lie algebra.

If X 1is any Riemannian manifold then the natural atlas is the atlas

b

of normal coordinates indexed by the points of X. pg of this atlas can

be estimated using the Jacobi equation by dominating the norm of the
curvature tensor and r - 1 of its covariant derivatives. AG(x) is
essentially the distance to the cut locus.

Lack of space has prevented the inclusion of the proofs of the above
remarks in this work. I hope to deal with the relations between the
metric theory and differential geometry elsewhere. However, in Chapter
VII we discuss Grassmanians and apply them to the following type of
question: Let Xo be a semicomplete Mr manifold (r > 1) and f: X > x0 be

T . .
a C immersion. When does X carry an mF structure such that f is an

i : ;
M immersion? The Grassmanian G(Txo) and the associated lifting
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G(f): X > G(Txo) allow us to construct natural atlases on X associated

with £ which show that the ﬂf structure, if it exists, is unique. The

existence problem is handled inductively using smoothing results like the
+1

. 5
following: Let f: X - xo be an mr immersion (r > 1) and Xo be an m

manifold. There exists an mr+l structure on X with respect to which £

is an mf+l

- r A
immersion iff the mr A map G(f): X > G(Txo) of M manifolds
s r
is in fact an M map.
In Chapter VII, we also consider leaf immersions. Let xo be a semi-

complete g? manifold with do some admissible atlas metric. Let X be a

semicomplete cr manifold and f: X > X_ be a cr immersion. f is called

0
a cﬁ leaf immersion if £ is a cﬁ map with respect to the apm f*do =
do-f X £ on X (in the sense of Chapter V). Inductively define Go(xo)
=x,, ¢°(5) = £ ana e x) = cret x)), Mo = c(ct e x > iy
and choose di some admissible atlas metric on Gi(xo). A c? immersion £

is a ci leaf immersion iff f*d_  is uniformly equivalent to Gr(f)*dr.

0
The standard example of a leaf immersion is the "inclusion" of the leaf
space of a foliation into the ambient manifold. Leaf immersions were
introduced by Hirsch, Pugh and Shub [12] who proved the existence of an
atlas on the domain, called a plaguation atlas, which resembles a folia-
tion atlas in some respects. We prove that a bijective ci leaf immersion
with closed image is a lamination or partial foliation in the sense of
Ruelle and Sullivan [25] iff a certain weak factoring property holds.

A semicomplete, finite dimensional manifold X is said to be of
finite type if there exist an s admissible atlas G = [Ua’ha} and an
integer N such that for each x € X, x € Ua for at most N values of aq,
i.e. if the nerve of the cover [Ua] has dimension < N. A classical result
of dimension theory assures that with N = dim X + 1 admissible atlases
exist with this property. However, I was unable to preserve the unifor-

mity of the open cover in getting such an atlas and so have been unable
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to prove the obvious conjecture that every semicomplete, finite dimen-
sional manifold is of finite type. However, a rich stock of manifolds
of finite type is provided by the theorem that if X is a semicomplete
manifold which il immerses in Xo, a manifold of finite type, then X 1is
of finite type. Conversely, any mf manifold of finite type mf immerses
in some Euclidean space. This result and many other translations into the
metric category of standard results of differential topology follow for
manifolds of finite type because for such manifolds partitions of
unity are available in the metric category. Using partitions of unity
and transversality theory we are able to prove standard smoothing results
in the metric category for manifolds of finite type. 1In particular, any
ﬂr metric structure of finite type can be smoothed to obtain a c? struc-
ture of finite type, i.e. there exist in the '_fnr structure adapted atlases
(G,p) with p > l/xa, p > pct for t = 1,2,... , and the nerve of (g is
finite dimensional.

Notation: All pseudometrics in this work are allowed to take the
value o. Bd(x,r) (or Bd[x,r]) is the open (resp. closed) d-ball about
x with radius r. In cross references, we will drop the self-referrent
part of a theorem's designation. Thus, Proposition III.7.2 occurs in
Section 7 of Chapter III and in Chapter III it will be called Proposition
7.2 except in Section 7 where it will be called Proposition 2.
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