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Preface

This monograph is an attempt to give an overview of the theory of context-
free languages and also the most important results on combinatorics of
words in relation to primitive words.

Combinatorial properties of words play an important role in mathemat-
ics and theoretical computer science. One of the well-known open problems
is related to the language of primitive words. A word is called primitive if it
is not a repetition of another word. (Thus the empty word is non-primitive.)

We conjectured that the language @ of all primitive words over a non-
singleton alphabet is not context-free (P. Démési, S. Horvath, M. Ito
[1991]). The problem seems to be simple but we have not yet found the
solution.

Apart from the conditions of the Wise lemma (D. S. Wise [1976]), @ has
all the well-known iteration conditions of context-free languages (P. Domosi,
S. Horvéth, M. Ito, L. Készonyi, M. Katsura [1992,1993]).! Another test of
context-freeness is the so-called Interchange lemma (W. Ogden, R. J. Ross,
K. Winklmann [1982]). It is also proved that @ fulfils the conditions of this
test (S. Horvath [1995]). Therefore, @ resists almost all well-known tests
of context-freeness.

It is also well-known that the intersection of a regular and a context-free
language is again a context-free language. Therefore, if we find a regular
language R such that RN @ is not context-free then we can show that @
is not context-free. By some results of L. Kdszonyi and M. Katsura [1996,
1997, 1999a, 1999b]|, this approach also seems to be hopeless.

Perhaps an appropriate homomorphic characterization of languages (see
N. Chomsky and M. P. Schiitzenberger [1963], R. J. Stanley [1965], S. Hirose

INote that the applicability problem of the Wise lemma is equivalent to the original
problem.
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and M. Yoneda [1985], P. Démési and S. Okawa [2003]) could help to prove
our conjecture about the context-freeness of (). Another possible direction
of research to prove or disprove our conjecture is to follow the approach to
formal language theory by means of Kolmogorov complexity started by M.
Li and P. Vitanyi [1995], and also O. Glier [2003].

The monograph is almost completely self-contained in the sense that no
further sources are necessary for the proofs of the results. No prerequisite
knowledge on formal languages and combinatorics of words is necessary. In
very rare cases some additional statements are mentioned without proof.
Several recent developments are discussed. In addition, a number of well-
known classical results with new, alternative proofs are shown.

The authors are grateful to Kyoto Sangyo University, Nyiregyhdza
College, Debrecen University, the Japan Society for the Promotion of
Science (JSPS), the Hungarian Academy of Sciences (HAS), and the
Hungarian Foundation of Science and Technology (TéT Foundation) for
their constant support during the development of this monograph.

Special thanks to Francine Blanchet-Sadri, Szilird Zsolt Fazekas,
Laszlé Kaszonyi, Yoshiyuki Kunimochi, Peter Leupold, Gerhard Lischke,
and Jeffrey Shallit for their useful comments concerning the manuscript.
The authors are also very grateful to Andrea Pdkozdy and Attila Gildnyi
for their careful linguistic revision. We are especially grateful to the staff at
World Scientific and especially, Ms. Tan Rok Ting, for their encouragement
and help in bringing about this monograph. In addition, the first author is
grateful to his wife, Eva Tiinde Rapolti, who always supported him in his
scientific activity.
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Professor Emeritus
Nyiregyhaza College, Hungary
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Masami Ito
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Chapter 1

Preliminaries

1.1 Background

We start with a discussion of some set-theoretic notation. The set
S consisting of all the elements that have the property P is written
S = {s | s has the property P}.! If s is an element of S, we write s € S.
The opposite case is expressed by s ¢ S. If s € S implies that s € T,
then S is a subset of T' and we write S C T. The set of all subsets of S is
called the power set of S and it is denoted 25. The set difference S\ T is
{s|se€ Sands¢T}. Twosets S and T are equal, in symbols S = T, if
S C T and T C S. Moreover, S is a proper subset of T', denoted S C T, if
S C T and S # T. The set containing no elements, the empty or void set,
is denoted (). The intersection of S and T is the set consisting of all the
elements in both S and T and we write SNT = {s | s € S and s € T'}. The
union of S and T is the set consisting of the elements in either S or 7' In
symbols, SUT = {s | s € S or s € T'}. The set operations naturally extend
to families of sets {S; | i € I'} where [ is referred to as an index set:?

USi = {s|s € S; for some i € I},
el
ﬂSiz{slseSi for all i € T}.
i€l
If I is a finite (nonempty) set then we also say that (J,.; Si is a finite union
and (;c; Si is a finite intersection of sets S;,i € I, respectively. Two sets

1This way of specifying sets suffices for the purposes of this monograph and will not
lead us into any foundational difficulties. To avoid ambiguity, sometimes we also use the
form S = {s: s has the property P} instead of S = {s | s has the property P}.

2An index set may be empty, but in this monograph we will consider only nonempty
index sets.
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are disjoint if SNT = () and a family of sets {S; | 7 € I} is disjoint if
the sets are pairwise disjoint: S; N S; # 0 implies i = j for all i,j € I.
The cardinality of a set S is denoted by |S|. The set S is called finite if it
has finitely many elements. Thus |S| denotes the number of elements for a
finite set S. In particular, if |S| = 1, then S is called a singleton.

Let S and T be sets. A function f of S into T, written f : § — T,
assigns to every element s € S an element t € T, written f(s) = ¢.?
Then t is the image of s, and s is an inverse image or pre-image or
counter image of t under f. S is called the source and T is the target
of f. If the source and the target coincide, then we also say that f is
a transformation and is said to transform the elements of S. We put
fUt) ={s| f(s) =t,s € S} for every t € T. We will also use the notation
f(S")={f(s)|seS}and f~H(T") = Uyeq, f'(t) forany S’ C S, 7" C T.
The function f is sometimes called a map or mapping from S to T. The set
f(S)={f(s)|s € S}is called the image of f : S — T. The rank of f is the
cardinality of its image. If |f(S)| = 1, then f is a constant function, or in
short, a constant. If f(S) =T then f is an onto or surjective function. If
f is surjective, we may also write f : S — T. The function f is one-to-one
or injective if for every si,s2 € S, s1 # so implies that f(s1) # f(s2). If f
is injective, we sometimes write f : .S < T. If f is surjective and injective
then it is called bijective. A bijective transformation is a permutation and
is said to permute the elements of S. A partial function, or in other words,
a partially-defined function from S to T is a function f: S — T, where S’
is a subset of S.

Given a pair of sets S and Y, a multi-valued function f or a multiple-
valued function of S into Y is a partially-defined function of S into 2¥.%

Let f: A— B,g:C — D be functions with C' C A and g(c) = f(c)
for each ¢ € C. Then we say that f is an exztension of g (to A) and
that ¢ is a restriction of f (to C'), and sometimes we write ¢ = f|c. The
(right) composite or (right) product fg of functions f: S —T,g:T — U
is the function h : S — U with h(s) = g(f(s)) for all s € S. For any
transformation f : S — S and positive integer k& we define the k-th power
f¥ of f as a transformation f* : S — S having f¥(s) = f(s),s€ Sifk =1
and f(s) = f(f*1(s)),s€ Sifk>1.°

3Considering such an f: S — T, sometimes we say that f is well-defined.

4In more precise terms, a multi-valued function may not be a function at all, at least
not in the conventional sense.

5The definition fO(s) = s,s € S is also allowed. In this monograph we consider f* with
k>0.
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Throughout this monograph, < is the set of complex numbers, R is the
set of real numbers, Q is the set of rational numbers, N denotes the set
of positive integers, Ny denotes the set of non-negative integers, and for
integers k,n(n > 2), k mod n denotes the least positive integer k' such
that n divides k — k’. (In particular, 0 mod n = n.) In addition, if n is a
positive integer which divides & — y for some pair of integers x,y, then we
write = y (mod n). Moreover, let us remark that for a real number z,
|| and also [z] denote the greatest integer which is smaller or equal to x
(called integer part or integer part of z), and [z] denotes the smallest integer
which is greater than or equal to z. By a strict divisor of a positive integer
n we mean any divisor s > 1 of n (including n itself). Finally, given a list
c1,...,cy of integers, let lem(eq, ..., ¢,) denote the least common multiple,
and let ged(ey, ..., c,) denote the greatest common divisor of ¢y, ..., ¢,.

The Cartesian product of a finite sequence of sets Sy,...,S5, is the set
Sy x--ox 8, = {(sl,...,sn)|sl € 81y.+v38n € Sn} fS=5=---=85,
then we call it Cartesian power. It is also defined for a not necessarily finite
family {S; | i € I'} of sets as the set of all functions ¢ : I = J,.; Si such
that, for every i € I, (i) is in S;. For this concept we use the notation
[L;c; Si- (For a finite index set I, it is more convenient to think of the
elements of a Cartesian product as a set of n-tuples as defined above.)

Let No(= {0,1,2,...}) be the set of non-negative integers, n be a pos-
itive integer, and Nfj be the Cartesian power of Ny with n items. Let
= (21,...,2,) and y = (y1,...,yn) with 2,y € Njj. Define
z+y = (x14+y1,...,Zn+yn) and for m > 0, define ma = (mzy,...,mz,).

A set either of the form F = () or

F={po+ Y kipi | ki >0},

i=1
where po,...,p, are elements of Nf, is said to be a linear subset of Ni} or,
in short, a linear set. pg is called the constant of F and Fp = {p1,...,pr}

is the set of periods of F. A semi-linear set is a finite union of linear sets.
A subset H of Njj is said to be stratified if the following two conditions
are satisfied:

(i) for every (zy,...,2,) € H, [{z; | z; > 0,i € {1,...,n}| <2
(ii) there are no integers i, j, k, ¢ and (z1,...,2,), (2},...,2)) € H,
such that 1 <i< j <k < ¢ <nand w,m;xk.zr; #0.

Thus, condition (ii) asserts that there are no two elements = and z’ of
H such that the indices of two non-zero components of x interlace with the
indices of two non-zero components of z’.
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The following two obvious facts are occasionally used in Section 6.2.

Fact 1.1.1. Given positive integers n,m and the set Ny of non-negative
integers, let H be a stratified subset of Njj. Then H x {0}™ and {0} x H
are stratified subsets of Nj ™. O

Fact 1.1.2. Given positive integers n,m and the set Ny of non-negative
integers, let H C Nj be stratified. Moreover, let 1 < iy < -+ <, < n. If
f Ny — Ni* is a function defined by f((21,...,24)) = (24, .., 2i,,), then
f(H) is stratified. O

A relation between a set S and a set T' is a subset p of S x 7. For
(s,t) € p we write s p t. Thus p = {(s,t) | s p t}.

A relation p between S and S itself is simply called a relation on S. It
is called reflexive if, for all s € S, s p s; symmetric if, for every s,t € S,
s p timplies t p s; antisymmetric if, for every s,t € S, s pt and t p s imply
s = t; and transitive if s pt and t p u imply s p u for every s,t,u € S. A
relation p on S is an equivalence relation on S if p is reflexive, symmetric,
and transitive. If p is an equivalence relation on S, then for every s € S,
the set s/p = {t | s p t} is the equivalence class of s under p. This notation
is extended to an arbitrary subset S’ of S by S'/p = {s'/p| s € S'}. A
partition ™ on S is a collection of disjoint subsets of S whose set union is S.
Then, in symbols, 7 = {S; | i € I} such that S; NS; =0 for ¢ # j,i,j € I,
and (J;c; Si = S. Sometimes we refer to the elements of 7 as blocks. For
every s € S, m(s) will denote the block containing the element s. It is clear
that if p is an equivalence relation on S then S/p is a partition of S and
that every partition of S can be given this way.

Given a set S and a positive integer n, the mapping S™ — S is called
an n-ary operation on S. We also define the concept of 0-ary operation on
S as a fixed constant ¢ of S, which is also written in the form ¢ : S° — §
sometimes. An n-ary operation on S, with n > 0, is also simply called an
operation on S.

Given a nonempty set S, let A be a set of operations on A. We say that
the equivalence relation p4 on S is a congruence relation with respect to A
if, for every f : S™ — S,a1,a},...,an,a, € A, with f € A and a;paal,
i=1,...,n, f(ai,...,an)oaf(a},...,al). We note that 0-ary operations
have no arguments and thus, considering the set 7" C A of 0-ary operations
on S, the congruence relations on A and A \ T coincide. In addition, if
A consists of 0-ary operations, then every equivalence relation on S is a



