

Advances in Composites Manufacturing and Process Design

Edited by Philippe Boisse

Woodhead Publishing Series in Composites Science and Engineering: Number 56

Advances in Composites Manufacturing and Process Design

Edited by

Philippe Boisse

Woodhead Publishing is an imprint of Elsevier 80 High Street, Sawston, Cambridge, CB22 3HJ, UK 225 Wyman Street, Waltham, MA 02451, USA Langford Lane, Kidlington, OX5 1GB, UK

© 2015 Elsevier Ltd. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

ISBN: 978-1-78242-307-2 (print) ISBN: 978-1-78242-320-1 (online)

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2015939552

For information on all Woodhead Publishing publications visit our website at http://store.elsevier.com/

Printed in the United States of America

Advances in Composites Manufacturing and Process Design

Related titles

Manufacturing Techniques for Polymer Matrix Composites (PMCs), (ISBN 978-0-85709-067-6)

Composite Reinforcements for Optimum Performance (ISBN 978-1-84569-965-9)

Machining Technology for Composite Materials (ISBN 978-0-85709-030-0)

List of contributors

- R. Akkerman University of Twente & TPRC, Enschede, The Netherlands
- B. Arold Airbus Group Innovations, Munich, Germany
- I. Baran University of Twente, Enschede, The Netherlands
- S. Bel Technische Universität München, Garching bei. München, Germany, and Université Claude Bernard Lyon 1, Villeurbanne, France
- G. Bernhart Université de Toulouse, Toulouse, France
- K. Birkefeld University of Stuttgart, Stuttgart, Germany
- P. Boisse Université de Lyon, Lyon, France
- H. Bougherara Ryerson University, Toronto, ON, Canada
- F. Boussu ENSAIT—GEMTEX Laboratory, France
- A. Cerisier Institut Clément Ader (ICA), Université de Toulouse, Toulouse, France
- A. Charmetant Université de Lyon, Lyon, France
- F. Collombet Institut Clément Ader (ICA), Université de Toulouse, Toulouse, France
- A. Crosky UNSW Australia, Sydney, NSW, Australia
- L. Crouzeix Institut Clément Ader (ICA), Université de Toulouse, Toulouse, France
- Y. Davila Institut Clément Ader (ICA), Université de Toulouse, Toulouse, France
- B. Douchin Institut Clément Ader (ICA), Université de Toulouse, Toulouse, France
- C. Dufour ENSAIT—GEMTEX Laboratory, France
- G. Dusserre Université de Toulouse, Toulouse, France

xii List of contributors

- S. Farzaneh Arts et Métiers ParisTech, Paris, France
- J. Fitoussi Arts et Métiers ParisTech, Paris, France
- A. Gessler Airbus Group Innovations, Munich, Germany
- C. Grant Composites Consultant, Sandy, UT, USA
- T. Gries Institut für Textiltechnik, RWTH Aachen University, Aachen, Germany
- Y.-H. Grunevald Composites Expertise & Solutions, Castanet-Tolosan France
- S.P. Haanappel University of Twente & TPRC, Enschede, The Netherlands
- J.W.S. Hearle University of Manchester, Manchester, UK
- D. Kelly UNSW Australia, Sydney, NSW, Australia
- S. Khelladi Arts et Métiers ParisTech, Paris, France
- M. Lefebvre HERAKLES—SAFRAN, Le Hayan, France
- X. Legrand Ecole Nationale Supérieure des Arts et Industries Textiles (ENSAIT), Roubaix, France
- C. Metzner Airbus Group Innovations, Munich, Germany
- N. Naouar Université de Lyon, Lyon, France
- F. Nony CEA le Ripault, Monts, France
- C.H. Park Mines Douai, Douai, France
- G. Pearce UNSW Australia, Sydney, NSW, Australia
- K. Potter University of Bristol, Bristol, UK
- S. Ramaswamy Institut für Textiltechnik, RWTH Aachen University, Aachen, Germany
- J. Schäfer Institut für Textiltechnik, RWTH Aachen University, Aachen, Germany
- A. Tcharkhtchi Arts et Métiers ParisTech, Paris, France
- R. Thévenin Structure Conformance, Airbus Group, Toulouse, France

List of contributors xiii

- F. Veyet ENSAIT-GEMTEX Laboratory, Roubaix, France
- G.L. Vignoles University of Bordeaux, Pessac, France
- C. Ward University of Bristol, Bristol, UK
- **B. Wendland** Institut für Textiltechnik, RWTH Aachen University, Aachen, Germany
- R. Zitoune Institut Clément Ader (ICA), Université de Toulouse, Toulouse, France

Preface

Composite materials allow the manufacturing of structures with high mechanical properties with reduced mass. Consequently, they are a possible way to reduce energy consumption in the transportation industries. Their development is important in particular for civil planes. The structures of the most recent long-range transport aircraft are made of composite materials. In the automotive industries, many projects aim to use composite materials in future cars. In civil engineering, composite materials are used to repair and reinforce buildings.

A composite material is the association of a fibrous reinforcement and of a matrix. The fibers can be short or continuous. The structures strongly loaded need continuous fibers. The fibers withstand loadings. The matrix aims to prevent the motion between fibers and, consequently, to constitute a solid. There are many kinds of fibers and matrices. They can be associated with many manufacturing methods. Finally, the resulting composite materials are numerous.

The first part of this book presents new advances in composites manufacturing and process design:

Braiding is a versatile and cost-efficient process for the production of fiber preforms for composites. The range of shapes with different characteristics is very wide. The material waste can be reduced to a minimum, which is even more important when expensive carbon yarns are used.

Knitting processes are efficient ways to manufacture automatically net-shape preforms of technical fibers. 3D preforms can be knitted with one or several types of fiber, with various local knitting patterns and, thus, various local thicknesses and properties.

Weaving processes can be adapted to manufacture composite preforms. These textile structures are near-to-shape designed and produced on adapted processes. Loom adaptations have been made to achieve the production of 3D warp interlock fabrics. These textile structures have been revealed to be particularly adapted to the dry forming process.

Fiber placement involves the laying down of reinforcing fibers along predefined trajectories in the component. The goal of fiber placement is to maximize the performance of a particular part by utilizing the highly directional strength of fiber reinforcement.

Drape processes are required to cover a doubly curved tool surface with sheets of reinforcement or prepreg. They are both manual and semiautomated manufacturing processes. They are based on the very specific deformation behavior of textile materials.

Thermoforming or hot press forming is a fast manufacturing process of thermoplastic composite laminates. The forming stage can be executed rapidly with preconsolidated

rvi Preface

thermoplastic composite laminates, as only heating is required to transform the material from a strong and stiff to an easily formable state and subsequent cooling to achieve the reverse transformation.

The advantages of 3D fabrics are high delamination and crack propagation resistance, which leads to good impact and fatigue properties. Overbraiding and 3D braiding technology offer diverse opportunities to manufacture near net-shape preforms.

The chemical vapor infiltration (CVI) process is used to fabricate the interphases and matrices of CMCs. This process involves complex physicochemical phenomena such as the transport of precursor, carrier, and by-product gases in the reactor and inside a fibrous preform, chemical reactions, and the structural evolution of the preform.

Machining operations on composite material are necessary. The heterogeneity and anisotropy of these materials makes their machining difficult. The effect of these processes using conventional and nonconventional machining on the nature of the damage generated as well as on the mechanical behavior of composite parts made of carbon/epoxy is investigated.

The best damage tolerance of composite solution has been shown but also the necessity to define optimized *repair* solutions. A global vision of repair is proposed through a case study.

The second part of the book introduces the mechanical properties of reinforcements and matrices and the simulations of manufacturing processes.

A digital representation of 2D *woven fabric* structure is based on the forms of crossover in different repeat units. Six modes of deformation are considered: in-plane, two tensile and shear, out-of-plane, two bending, and twist. Energy minimization is used to model these properties.

Noncrimp fabrics arose from the challenge to create reinforcements that combine unidirectional fibers with integrity, ease of handling, and drape of textile fabrics. From this challenge, several noncrimp textile structures were created with different manufacturing processes and different bonding solutions.

Epoxylamines systems are studied during their synthesis and once they are synthesized. The polyepoxies have an exceptional place among the thermosets because of their wide range of applications, especially in manufacturing of composites-based polymers. They are the result of the reactions between epoxy resins and hardeners.

FE analyses of composite reinforcement forming are presented at macroscopic and mesoscopic scales. Simulations of 3D interlock fabric deformations are based on a hyperelastic model. A simulation at mescoscale of the deformation of a textile composite reinforcement is presented. The FE model is obtained from X-ray computed tomography of the fabric in order to be close to the real geometry.

Numerical modeling and simulation approaches for the *resin flow* analysis in textile composites manufacturing processes are presented. According to the computational scale, which can be classified by textile microstructure, different governing equations for the resin flow are suggested.

Preface xvii

Numerical modeling strategies are presented for the *pultrusion* of thermosetting composite profiles. The focus is particularly on the forming die and postdie region in which the multiphysics take place.

Finally, works developed for *CVI modeling* are presented, ranging from simple analytical estimates to multiscale, multiphysics detailed numerical modeling.

Philippe Boisse

Woodhead Publishing Series in Composites Science and Engineering

The mopusite atomatic polymer composit	1	Thermoplastic	aromatic	polymer	composite
--	---	---------------	----------	---------	-----------

F. N. Cogswell

2 Design and manufacture of composite structures

G. C. Eckold

3 Handbook of polymer composites for engineers

Edited by L. C. Hollaway

4 Optimisation of composite structures design

A. Miravete

5 Short-fibre polymer composites

Edited by S. K. De and J. R. White

6 Flow-induced alignment in composite materials

Edited by T. D. Papthanasiou and D. C. Guell

7 Thermoset resins for composites

Compiled by Technolex

8 Microstructural characterisation of fibre-reinforced composites

Edited by J. Summerscales

9 Composite materials

F. L. Matthews and R. D. Rawlings

10 3-D textile reinforcements in composite materials

Edited by A. Miravete

11 Pultrusion for engineers

Edited by T. Starr

12 Impact behaviour of fibre-reinforced composite materials and structures

Edited by S. R. Reid and G. Zhou

13 Finite element modelling of composite materials and structures

F. L. Matthews, G. A. O. Davies, D. Hitchings and C. Soutis

14 Mechanical testing of advanced fibre composites

Edited by G. M. Hodgkinson

15 Integrated design and manufacture using fibre-reinforced polymeric composites

Edited by M. J. Owen and I. A. Jones

16 Fatigue in composites

Edited by B. Harris

17 Green composites

Edited by C. Baillie

18 Multi-scale modelling of composite material systems

Edited by C. Soutis and P. W. R. Beaumont

19 Lightweight ballistic composites

Edited by A. Bhatnagar

20 Polymer nanocomposites

Y-W. Mai and Z-Z. Yu

21 Properties and performance of natural-fibre composite

Edited by K. Pickering

22 Ageing of composites

Edited by R. Martin

23 Tribology of natural fiber polymer composites

N. Chand and M. Fahim

24 Wood-polymer composites

Edited by K. O. Niska and M. Sain

25 Delamination behaviour of composites

Edited by S. Sridharan

26 Science and engineering of short fibre reinforced polymer composites

S-Y. Fu, B. Lauke and Y-M. Mai

27 Failure analysis and fractography of polymer composites

E. S. Greenhalgh

28 Management, recycling and reuse of waste composites

Edited by V. Goodship

29 Materials, design and manufacturing for lightweight vehicles

Edited by P. K. Mallick

30 Fatigue life prediction of composites and composite structures

Edited by A. P. Vassilopoulos

31 Physical properties and applications of polymer nanocomposites

Edited by S. C. Tjong and Y-W. Mai

32 Creep and fatigue in polymer matrix composites

Edited by R. M. Guedes

33 Interface engineering of natural fibre composites for maximum performance

Edited by N. E. Zafeiropoulos

34 Polymer-carbon nanotube composites

Edited by T. McNally and P. Pötschke

35 Non-crimp fabric composites: Manufacturing, properties and applications

Edited by S. V. Lomov

36 Composite reinforcements for optimum performance

Edited by P. Boisse

37 Polymer matrix composites and technology

R. Wang, S. Zeng and Y. Zeng

38 Composite joints and connections

Edited by P. Camanho and L. Tong

39 Machining technology for composite materials

Edited by H. Hocheng

40 Failure mechanisms in polymer matrix composites

Edited by P. Robinson, E. S. Greenhalgh and S. Pinho

41 Advances in polymer nanocomposites: Types and applications

Edited by F. Gao

42 Manufacturing techniques for polymer matrix composites (PMCs)

Edited by S. Advani and K-T. Hsiao

43 Non-destructive evaluation (NDE) of polymer matrix composites: Techniques and applications Edited by V. M. Karbhari

Eatted by V. M. Karbnari

44 Environmentally friendly polymer nanocomposites: Types, processing and properties

45 Advances in ceramic matrix composites

Edited by I. M. Low

46 Ceramic nanocomposites

Edited by R. Banerjee and I. Manna

47 Natural fibre composites: Materials, processes and properties

Edited by A. Hodzic and R. Shanks

48 Residual stresses in composite materials

Edited by M. Shokrieh

49 Health and environmental safety of nanomaterials: Polymer nanocomposites and other materials containing nanoparticles

Edited by J. Njuguna, K. Pielichowski and H. Zhu

50 Polymer composites in the aerospace industry

Edited by P. E. Irving and C. Soutis

51 Biofiber reinforcement in composite materials

Edited by O. Faruk and M. Sain

52 Fatigue and fracture of adhesively-bonded composite joints; Behaviour, simulation and modelling Edited by A. P. Vassilopoulos

53 Fatigue of textile composites

Edited by V. Carvelli and S. V. Lomov

54 Wood composites

Edited by M. P. Ansell

55 Toughening mechanisms in composite materials

Edited by Q. Qin and J. Ye

56 Advances in composites manufacturing and process design

Edited by P. Boisse

57 Structural Integrity and Durability of Advanced Composites: Innovative modelling methods and intelligent design

Edited by P.W.R. Beaumont, C. Soutis and A. Hodzic

58 Recent Advances in Smart Self-healing Polymers and Composites

Edited by G. Li and H. Meng

59 Manufacturing of Nanocomposites with Engineering Plastics Edited by V. Mittal

60 Fillers and Reinforcements for Advanced Nanocomposites

Edited by Y. Dong, R. Umer and A. Kin-Tak Lau

试读结束: 需要全本请在线购买: www.ertongbook.com