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Preface

Good grief, not another book on representation theory! A cursory inspec-
tion of the small, if select, library at the Max-Planck-Institut in Bonn yields
at least eight good introductory texts. These include the elegant book by
J.P. Serre [J-P. Serre], against which all others should be judged. Beyond
that the choice is perhaps a matter of taste - what particular slant does
the author give to the subject, has she or he any special concerns? The
approach chosen here is to present the elementary representation theory of
finite groups in characteristic zero in a way which generalises immediately
to compact topological groups. The only fresh ingredient needed is an in-
variant integral, which replaces taking the average by means of the sum
over the group elements divided by its order. The parallel development is
summarised at the end of Chapter 6; with finite groups as a special case of
compact groups there is an inner product on the space of class functions
under which the irreducible characters form a normal orthogonal set span-
ning a dense subspace. Two other topics receive special attention, exterior
powers and the finite algebraic groups SLy(F,). I have long believed that
the A-structure of the representation ring R(G) is a much under-used tool.
Some indication of this is given in the exercises devoted to the symmetric
groups Sy, but the applications are much wider, extending not only to the
various families of simple groups of Lie type, but also to the 26 sporadic
groups. As a topologist I have long been interested in SLy(F,), and Chap-
ter 8 is intended to illustrate the general principle that in characteristic zero
the representation theory of a finite algebraic group has the flavour of the
theory for the corresponding group defined over R or C. In contrast in the
natural characteristic p the model is that of a maximal compact subgroup
in the complexification.
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viii Preface

The exercises are an important part of the text, and should be
attempted, not just for their own sake, but also because in a few cases
the results are used in a later chapter. The book concludes with an un-
even collection of hints, worked solutions and additional references. The
bibliography is short and contains no more than the rival books, which I
have consulted, and references to theorems mentioned in the text but not
proved. The starred sections (*) may be omitted at a first reading.

The book has grown out of various sets of notes for a course of 16 or 24
lectures at the senior year level at Cambridge. My thanks are due to the
generations of students who have attended, and interrupted, these lectures
and to those who I have individually supervised. Their comments are a
reminder of what a privilege it is to work in a great university. Errors
inevitably remain, and are solely my responsibility.

I wrote the final version during sabbatical leave from Cambridge at the
University of California at Santa Cruz, Stanford University and the Max-
Planck-Institut in Bonn. I am grateful to all three institutions for their
hospitality and support. I also thank Laurent Chaminade and Gabriella
Frescura at Imperial College Press for their help, and most of all Michele
Bailey for typing and producing the camera-ready text.

Bonn, Michaelmas 2003
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Chapter 1

Introduction

Our topic is the representation theory of finite and, more generally, of com-
pact topological groups . The latter will be defined formally later; for the
moment the reader can think of a topological group as a set carrying both
a topology and a group structure, which are compatible in the sense that
multiplication and inversion are continuous. Examples are SLy(R) (non-
compact) and the special unitary groups SU, (compact), both of which
are important in theoretical physics. A representation of G is a homomor-
phism of G into Autc(V), the group of linear automorphisms of a finite
dimensional vector space over the complex number C. By choosing a basis
{e1...en} of V such a representation determines a homomorphism

p: G — GL,(C).

If G carries a topology, we give GL,(C) its topology as an open subset of
2
C™, and require the homomorphism p to be continuous.

Examples.

(i) Let C2 = {a : a" = 1} be a cyclic group of order r generated by a,
and let ¢ be some primitive rth root of unity. The homomorphism
g : Cp — Uy € C* = C — {0} which maps a to (7 is a 1-dimensional
representation of the group. Note that oy is injective (we say that aq is
‘faithful’) if and only the greatest common divisor (ged = (r, q)) of r and
q equals 1. We will see later that every representation of a finite abelian
group A is built up from ‘irreducible’ representations of this kind.

(ii) Let G = Qs, the quaternion group with presentation

{a,b:a* =1, a®> =% b lab= a1}
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Such a ‘presentation’ can be regarded as a contracted multiplication
table in that it tells us that each element can be written as a product
a'bl, that there are eight such distinct products, and that they can be
multiplied using the rule ba~! = ab repeatedly. [Exercise - Write out the
multiplication table, and check that it corresponds to that of the basic
quaternions {+1, +7,+3j, +k} under the rule a < i,b < j.]

The map p
a+— i0 br— 0-1
0—1 10
extends to a homomorphism of Qg into SUs.
If H denotes the algebra of quaternions, note that H is 2-dimensional
over C and that SUs; may be identified with the quaternions of unit
length, using the representation just defined. The group Qs also has 1-

dimensional representations, obtained by composing the projection ho-
momorphism

T:Qs — CTx C

having Ker(7) equal to the subgroup generated by a2, with any one of
the four 1-dimensional representations mapping @,b to +1. We label
these as 1,a, 3 and af. Using the multiplication table we see that Qg
has five conjugacy classes of elements

(1) (az)(a, a 1) (b,b"1)(ab,a™b).

Taking the trace of the representating matrices, and noting that the
trace is constant on conjugacy classes, we obtain the following table

1| a? a b ab
1 1 1 1 1 1
o 1 1 -1 1 -1
Jo] 1 1 1 -1 -1
af 1 1 -1 -1 1
p 2 -2 0 0 0

We ask the reader to check three things about this square array. First
and most importantly, each row can be associated unambiguously with one
of the representations described. Secondly, if we add the first four entries in
each column to twice the fifth we obtain 8 (equals the order |Qs|) for column
one and zero otherwise. Thirdly, even though the matrices describing p are



Chapter 1: Introduction 3

complex, the entries in the table are real. We shall see later that these are
special cases of important general phenomena.

Before leaving Qg let us present the generalised quaternion group of
order 4t, which will be useful later,

Q= {a,b:a® =1,a' =b*,bab=a7"}.

In terms of the quaternion algebra H a can be identified with ™/t and

b with 7.

Given a homorphism of G into Autc (V) we can think of G as acting on
the vector space V via the map g.v = p(g)v for all v € V. More directly
we can define such an action as a (continuous) map

GXV ——>V
(g,v) —g-v

satisfying g1(g2v) = (g1g2)v and 1-v = v for all g1,92 € G and v € V.
At least when G is finite, the G-action and C-action (scalar product) on V
can be combined as a C[G]-action, where C[G] denotes the so-called group
algebra of the finite group G.

Definition. The ring C[G] consists of formal linear combinations

2 gec Ag9s Where Ay € C, and
deG /\gg + deg Hgg = ZgGG()‘g + ,U'y)g,
(dec A9)(Dhec rh) =D iea Zgh:k Aghink.

It is a straightforward and tedious exercise to check that, with these
definitions of addition and multiplication, C[G] is a ring, which is com-
mutative if and only if G is an abelian group. Although we are primarily
interested in the complex group algebra, it is important to note that the
same definition holds with A equal to any commutative ring rather than
A = C. We then obtain the group ring A[G], which has been much-studied
both by topologists and number theorists.

Examples.

(i) Write out the multiplication table for the group ring F[Cs], where Fa
is the finite field with 2 elements, and C; is a cyclic group of order 2.
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(ii) If C2 is a cyclic group of order p (p = prime), and ¢ is a primitive
p™™ root of unity (for example ¢ = €2"*/P), show that the map a —
¢ extends to a homomorphism of rings Z[Cp] — Z(¢) — Q(¢), and
identify its kernel.

The discussion above shows that, for finite groups G, complex repre-
sentation theory is equivalent to the theory of the structure of finitely-
generated C[G]-modules. One of our first results will be to show that C[G]
belongs to a very special class of semisimple rings, and, although we shall
not adopt this approach, the whole of classical representation theory can
be read as a special case of that of semisimple rings. We develop this more
abstract algebra in Appendix B.

Now for some basic definitions, which can be formulated either in the
language of G-spaces or of C[G]-modules.

(1) The G-spaces V; and V; are said to be equivalent if there exists a C-

linear isomorphism f : V; — V5, compatible with the G-actions. This
means that f(p1(g)v) = p2(g)f(v) for all g € G and v € V5.
Note that we must distinguish carefully between Homg(Vi, V2) and
Homc(g)(V1,V2), and that equivalence is expressed in terms of the
latter family of homomorphisms. Note also that a group homomor-
phism from G into Autc(V) extends to an algebra homomorphism
C[G] — Homc(V,V), and that conversely, given such an algebra ho-
momorphism, we can recover p by restricting to the elements of G.
However injectivity of the group homomorhpism does not necessarily
imply injectivity of the algebra homomorphism.

(2) The ring of linear maps Homg¢(V, V) is itself a vector space over C and
can be given the structure of a G-space using the definition gf(v) =
g(f(g~'v)). Clearly the same holds when V is replaced by a pair of
G-spaces V1 and Va2, and Homcg(g)(V1, V2) coincides with the subset of
invariant elements. Notation: For any G-space V, VE = {v € V : gv =
v for all g € G}. Thus

Homgg)(Vi, V2) = Home (V4, V2)€.

If G acts trivially on V| i.e. the image of p in Autc(V) equals 1,, the
identity map, we write VG = V.

(3) As with ordinary vector spaces we can define sub-objects and quotient
objects. A G-subspace of V' is thus a C[G]-submodule, or a sub-vector
space W C V such that gw € W for all g € G and w € W. Given
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a G-homomorphism f : V] — V; we note that the kernel of f is a G-
subspace of V; and that the quotient vector space Vo/f(Vi) admits a
G-action with respect to which the projection map Vo — V5/f(V}) is a
G-homomorphism.

Definition. The G-space V is said to be irreducible if the only G-
invariant subspaces are {0} and V itself. The space V is indecomposable
if there is no non-trivial splitting of V' as the direct sum of G-subspaces
wWeoWw.

Proposition 1.1  (Schur’s Lemma) Let Vi and Va be irreducible G-
spaces. A G-linear map f : Vi — V4 is either trivial or an isomorphism.
In particular if V. =Vi = V2, Homc(g)(V, V) is a division ring.

Proof. Consider the kernel of a G-linear map f. Since Vj is irre-
ducible this either equals V;, in which case f is trivial, or equals {0}, in
which case Vi maps injectively onto its image. This is a submodule of
V3, hence either trivial or equal to V5. Hence a non-trivial map f must
be bijective. The second claim is an immediate consequence of this. (J

(4) If V is a finite-dimensional G-space we can define a C-linear map

Trg:V — V€ by
v — decgv.

The image is invariant, since pre-multiplication by A € G does no
more than permute the elements gv among themselves. As an im-
portant special case note that, if f € Homc¢(V;, V2), then Trg(f) €
Homg(g)(V1, V2).

More generally consider the composition

Bl
where ¢, f and v are all C-linear and ¢, 9 are G-maps. Then Trg (% -
f-o) =19 -Trc(f) - .

Proposition 1.2 (Maschke’s Theorem) Let W be a G-subspace of the
finite-dimensional G-space V over the complex numbers. There exists a
complementary G-subspace W' such that V=W @ W'.
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Proof. Decompose V as a direct sum W @ W’ over the complex numbers
C, and let m : V — W be the C-linear projection map onto W. Thus
m(v) = v for all v € W. We can average 7 over the elements of the finite
group G by setting

1

® |G|TYG(7F)

obtaining a pair of G-homomorphisms

EN
O——‘)W‘_V,
©

such that j is the inclusion, and ¢ - 7 = Idw. It is now easy to see that
there is a G-splitting of V as

V as W & ker(yp),

so that we can take W’ = ker(y). From the definitions, jW Nker(p) = {0},
and for an arbitrary element v € V,v — ¢(v) € ker(p). a

Simple though its proof is, Maschke’s Theorem is fundamental to repre-
sentation theory. We note in passing that it holds for representation spaces
over an arbitrary field k£ provided either that the characteristic of k does
not divide |G|, the order of G, or that the characteristic equals 0. We may
use it for example to study representations of a finite p-group of order p*
over an extension field of Fq(g # p).

Definition. Let R be a ring. The R-module V is said to be semisimple
if every R-submodule is a direct summand. The ring R itself is said to be
semisimple, if 1 # 0, and R is semisimple as a left module over itself.

We state the next group of results in terms of semisimple rings rather
than in terms of the special case C[G].

Throughout we assume that all the rings R which we consider contain
a multiplicative identity 1 = 1g. Although not strictly necessary we will
also make this assumption in Appendix B.

Proposition 1.3 The following two conditions are equivalent on a
(finitely generated) R-module V :

(1) V is a (finite) direct sum of irreducible R-modules,
(2) Every submodule of V' is a direct summand.
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Proof. LetV = @ V;, W CV and J be a maximal subset of the indexing
iel
set I such that the sum W + & V; is direct. We claim that this sum
j€J

V* equals V, that is contains each summand V;, ¢ € I. The intersection
V*NV; = {0} or V; because V; is irreducible. In the former case we can
adjoin ¢ to J, and J is not maximal. Hence V; C V*.

We next show that if (2) holds, V is a sum of irreducible R-modules,
with the sum not necessarily direct. An intermediate result is that every
non-zero R-module contains an irreducible R-module. Let v € V,v # 0,
and consider the submodule Rv. The kernel of the homomorphism R — Rv
is a left ideal L in R, contained in a maximal ideal M # R. Then M/L is
a maximal submodule of R/L, and hence Mv is a maximal submodule of
Ruv, not equal to Rv. We have isomorphisms

R/L = Rv
M/L = M,

and since (2) holds V' = Mv @& M’ for some submodule M’. Furthermore
Rv=Mva® (M'NRv),

because every element z € Rv decomposes uniquely as £ = av + z’, with
aeM,z’ € M', 2’ =z — av € Rv. The maximality of Mv in Rv implies
that M’ N R is irreducible.

Let Vo C V be the sum of all irreducible submodules of V. If Vj # V,
V =Vo & W with W # {0}, and there exists an irreducible submodule of
W, contradicting the definition of Vj.

Passage from sum to direct sum is achieved by the same trick as in the
proof that (1) = (2), i.e. take the maximal direct sum in V' and show that
it contains each V;. We leave this as an exercise. O

Proposition 1.4 Every submodule and every quotient module of a
semisimple module is semisimple; also every finitely generated R-module
over a semisimple ring R is semisimple.

Proof. Let U be a submodule of W a submodule of V. Since V is
semisimple V splits as U @ U’. If w € W w decomposes uniquely as
w=u+vu withu € U, v € U'. But v = w — u also belongs to W,
so that W = U @ (U’ N W). Hence U is a direct summand of W. For the
quotient module V/W we have a splitting V = W @ W', with W’ semisim-
ple and isomorphic to V/W. Finally every module over a semisimple ring
is semisimple, since it may be expressed as the quotient of a free module
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F over R. As a sum of copies of the underlying ring F' is semisimple by
Proposition 1.3. O

Our aim is to show that an irreducible module V' can give rise to a kind
of duality between the original ground ring R and the ring S = Endg(V) =
Hompg(V,V). This is sometimes called the double centraliser condition.

Let V be a semisimple R-module, i.e. a direct sum of irreducible (hence
“simple”) R-modules. As above let S = Endg(V). We can regard V as an
S-module with scalar multiplication defined by

(p,v) = p(v)

for p € Sand v € V. Each a € R induces an S-homomorphism f, : V -V
via the rule fo(v) = av. This is an S-map, because of the module condition
p(av) = ap(v). Hence there is a homomorphism of rings

and we would like to know the size of the image.

Proposition 1.5 Let V be semisimple over R, S = Endg(V) and f €
Ends(V). For an arbitrary element v € V we can find o € R such that

av = f(v).

Proof. Using the semi-simplicity of V write V = Rv® W with projection
map 7: V — Rv,m € Homg(V,V) = S.

Since f is given to be an S-map, f(v) = f(7mv) = 7 f(v), which must belong
to the submodule Rwv. O

Using a diagonal trick one can generalise 1.5 from one to finitely many
elements of V.

Proposition 1.6 Let V be irreducible over R, S = Endg(V), f €
Ends(V). Let vyi...vn be elements of V. Then we can find an element
a € R such that av; = f(v;) fori=1,2,...,n.

Proof. Consider the product map

f™.yr 5 yn
(’U1 ~--Un) =2 (f('Ul) .- 'f(vn))v

and write S’ = Endg(V™). As in elementary linear algebra, the ring S’ can
be identified with the ring of n x m matrices with coefficients in S. The



