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Preface

Many questions in modern differential geometry can be phrased as ques-
tions of geometric realizability; one studies whether or not certain alge-
braic objects have corresponding geometric analogues. One must examine
the relationship between the algebraic category and the geometric setting
to investigate the geometric consequences resulting from the imposition of
algebraic conditions on the curvature. The decomposition of certain spaces
of curvature tensors under the appropriate structure groups is crucial and
motivates many investigations. Although we will primarily focus on the
curvature tensor, there are other tensors which arise naturally and which
also play an important role in our study. As we will often work in the
indefinite setting, the structure groups are in general non-compact. This
imposes some minor technical difficulties. In this book, we have attempted
to organize some of the results in the literature which fall into this genre;
as the field is a vast one, we have not attempted an exhaustive account but
have rather focused on only some of the results in order to be able to give
a coherent account.

We begin in Chapter 1 by introducing some notation and stating the
main results of the book. We also outline in some detail the main results
of the book and relate various results to the whole. The remainder of the
book consists for the most part in establishing the results given here. In
Chapter 2, we turn our attention to representation theory and derive the
main results we shall need. Chapter 2 is self-contained with the exception
of the results of H. Weyl and others concerning invariance theory for the
orthogonal and unitary groups in the positive definite setting; the corre-
sponding results in the higher signature setting and in the para-complex
setting are then derived from these results. In Chapter 3, we present some
classic results from differential geometry.



vi Preface

In Chapter 4, we work in the real affine setting and in Chapter 5, we
work in the (para)-complex affine setting. In Chapter 6 we perform a
similar analysis for real Riemannian geometry and in Chapter 7 we study
(para)-complex Riemannian geometry. To the greatest extent possible, we
present results in the para-complex and in the complex settings in parallel.
We present following Chapter 7 a list of the main notational conventions
used throughout the book. Following this list, we have included a lengthy
bibliography. The book concludes with an index.

Each chapter is divided into sections; the first section of a chapter pro-
vides an outline to the subsequent material in the chapter. Theorems, lem-
mas, corollaries, and so forth are labeled by section. Equations which are
cited are labeled by section; equations which are not cited are not labeled.

To comply with stylistic requirements for this series, a few non-standard
usages have been employed for which we are not responsible. To begin
with, the bibliographic style will be unfamiliar to almost all mathemat-
ical readers. For example, [Brozos-Vézquez et al.(2009)] refers to work
by Brozos-Vazquez, Gilkey, Kang, Nikéevi¢, and Weingart. On the other
hand, [Brozos-Vazquez et al.(2009a)] refers to work by Brozos-Vazquez,
Gilkey, Nikcevi¢, and Véazquez-Lorenzo. The words “para-Hermitian (+)
or pseudo-Hermitian (—)” have been used rather than the customary
“para/pseudo-Hermitian”. There are a few other similar instances which
we hope will not disturb the reader unduely. Es lo que hay.

Much of this book reports on previous joint work with various authors.
It is an honor and a privilege to acknowledge the contribution made by these
colleagues: N. Blazi¢, N. Bokan, E. Calvifio-Louzao, J. C. Diaz-Ramos,
C. Dunn, B. Fiedler, E. Garcia-Rio, R. Ivanova, H. Kang, E. Merino,
J.H. Park, E. Puffini, K. Sekigawa, U. Simon, G. Stanilov, I. Stavrov,
Y. Tsankov, M. E. Vazquez-Abal, R. Vazquez-Lorenzo, V. Videv, G. Wein-
gart, D. Westerman, T. Zhang, and R. Zivaljevic. In addition to pleasant
professional collaborations, they have enriched the personal lives of the
authors.

Projects MTM2009-07756 and INCITE(Q9 207 151 PR (Spain) have
supported the research of M. Brozos-Vazquez. Project MTM2009-07756
(Spain) and DFG PI 158/4-6 (Germany) have supported the research of
P. Gilkey. Project MTM2009-07756 (Spain) and project 144032 (Serbia)
have supported the research of S. Nik¢cevic.

This book is dedicated to Ana, to Ekaterina, to George, and to Susana.

P. Gilkey, S. Nikéevié, and M. Brozos-Vdzquez February 2012
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Chapter 1

Introduction and Statement of
Results

A central area of study in differential geometry is the examination of the
relationship between purely algebraic properties of the Riemann curvature
tensor and the underlying geometric properties of the manifold. Many
authors have worked in this area in recent years. Nevertheless, many fun-
damental questions remain unanswered. When dealing with a geometric
problem, it is frequently convenient to work first purely algebraically and
pass later to the geometric setting. For this reason, many questions in dif-
ferential geometry are often phrased as problems involving the geometric
realization of curvature.

The decomposition of the appropriate space of tensors into irreducible
modules under the action of the appropriate structure group is central to our
investigation and we review the appropriate results in each section. Many
of the results in the book, although they involve non-linear analysis, are
closely tied to the representation theory of the appropriate group and the
corresponding linear subspaces. In contrast, other results are non-linear in
their very formulation since one is studying orbit spaces under the structure
group; these need not be linear subspaces.

In the remainder of Chapter 1, we summarize briefly the main results of
this book to put them into context for the reader. We shall discuss the ba-
sic curvature decomposition results leading to various geometric realization
results in a number of geometric contexts. This ensures that the various re-
lations between these theorems are clearly and concisely presented; further
details are presented subsequently.

We now outline briefly the contents of Chapter 1. In Section 1.1, we
present some basic notational conventions. In Section 1.2, we sketch some
of the representation theory we shall need; Chapter 2 will be devoted to
the proof of these results.
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The results of Section 1.3 and of Section 1.4 will be established in
Chapter 3 and in Chapter 4. In Section 1.3 we treat affine geometry.
Theorem 1.3.1 gives the decomposition [Strichartz (1988)] of the space of
generalized curvature operators as a general linear module. The dimen-
sion of these modules is given in Theorem 1.3.2. The decomposition of
Theorem 1.3.1 motivates the associated geometric realization results dis-
cussed in Theorem 1.3.3. In Theorem 1.3.4, we establish a basic geometric
realization result for the curvature and the covariant derivative of the cur-
vature of an affine connection or, equivalently, a connection with vanishing
torsion tensor. In Section 1.4, we study mixed structures; this is the geom-
etry of an affine connection in the presence of an auxiliary non-degenerate
inner product. The curvature decomposition [Bokan (1990)] is stated in
Theorem 1.4.1, the dimensions of the relevant modules are given in The-
orem 1.4.2, and the associated geometric realization result presented in
Theorem 1.4.3.

The results of Section 1.5 will be proved in Chapter 5. We return to
affine geometry to treat (para)-Kéahler affine curvature tensors. To em-
phasize the similarities, we shall for the most part present the complex
and the para-complex settings in parallel. We present the curvature de-
composition as (para)-complex general linear modules in Theorem 1.5.1
and as unitary modules in Theorem 1.5.2 [Matzeu and Nikéevié (1991)]
and [Nikéevié (1992)]. This leads to the geometric realization result given
in Theorem 1.5.3. The dimensions of these modules are stated in Theo-
rem 1.5.4.

The results of Section 1.6 and of Section 1.7 will be established in Chap-
ter 6. Section 1.6 treats Riemannian geometry. The Fiedler generators
[Fiedler (2003)] for the space of Riemannian algebraic curvature tensors are
given in Theorem 1.6.1. The fundamental curvature decomposition [Singer
and Thorpe (1969)] is given in Theorem 1.6.2, and an associated geometric
realization theorem by metrics of constant scalar curvature is presented in
Theorem 1.6.3. In Section 1.7, we study Weyl geometry; this is midway in
a certain sense between affine and Riemannian geometry. The extra curva-
ture symmetry of Weyl geometry is given in Theorem 1.7.1, the curvature
decomposition as an orthogonal module is given in Theorem 1.7.2, and the
basic geometric realization result is given in Theorem 1.7.3. Theorem 1.7.4
gives various characterizations of trivial Weyl structures.

The results of Section 1.8, of Section 1.9, of Section 1.10, of Section 1.11,
and of Section 1.12 will be established in Chapter 7. In Section 1.8, we turn
our attention to (para)-complex geometry. The curvature decomposition
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[Tricerri and Vanhecke (1981)] of the space of Riemann curvature tensors
in the pseudo-Hermitian and in the para-Hermitian settings is given in
Theorem 1.8.1. A geometric realization theorem is then presented in this
context in Theorem 1.8.3. The dimensions of the associated modules are
given in Theorem 1.8.2. If the almost (para)-complex structures Ji are
integrable, then there is an extra curvature condition (Gray (1976)]§ we
shall discuss this further in Theorem 1.9.1 in Section 1.9. The relevant
geometric realizability results are outlined in Theorem 1.9.2 and rely on the
curvature decompositions given previously. Theorem 1.9.3 is an algebraic
fact related to these conditions.

(Para)-Kahler geometry is treated in Section 1.10. The (para)-Kéahler
curvature condition is given in Theorem 1.10.1 and the associated geometric
realizability results are presented in Theorem 1.10.2. Additional curvature
decomposition results are given in Theorem 1.10.3. In Section 1.11, we
discuss Weyl geometry in the Kahler setting either for a complex or for
a para-complex structure. We also discuss an analogous algebraic condi-
tion giving rise to curvature Kahler-Weyl geometry. We shall restrict our
attention to dimensions m > 6 as the situation in dimension m = 4 is
quite different. In Theorem 1.11.1, we show any Weyl structure which is
(para)-Kahler is trivial and in Theorem 1.11.2, we give a similar character-
ization solely in terms of curvature. Theorem 1.11.4 is a similar result at
the purely algebraic level. Theorem 1.11.3 generalizes Theorem 1.7.2 and
Theorem 1.8.1 to Weyl geometry in the (para)-complex setting.

In Section 1.12, we change focus. Let V(2 be the covariant derivative of
the (para)-Kéhler form. This has certain universal symmetries. In Theo-
rem 1.12.1 we show that if H is any 3-tensor with these symmetries, then H
is geometrically realizable as the covariant derivative of the (para)-Kéahler
form of some almost para-Hermitian manifold or of some almost pseudo-
Hermitian manifold. This is based on an appropriate decomposition result
(see Theorem 1.12.3); the relevant dimensions of the irreducible modules
involved are given in Theorem 1.12.4.

Finally, in Section 1.13, we give a brief summary of results contained
in [De Smedt (1994)] concerning hyper-Hermitian geometry for the sake of
completeness.

It is worth giving a bit of an explanation about what we mean by geo-
metric realizability since this is the focus of the book. Let {T1,...,Tx} be a
family of tensors on a vector space V. The structure (V, Ty, ..., T)) is said
to be geometrically realizable if there exists a manifold M, if there exists
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a point P of M, and if there exists an isomorphism ¢ : V — TpM such
that ¢*L;(P) = T; where {Lq, ..., Ly} is a corresponding geometric family
of tensor fields on M. Thus, for example, if k = 1 and if T} = (-, -) is a non-
degenerate inner product on V', then a geometric realization of (V, (-,-)) isa
pseudo-Riemannian manifold (M, g), a point P of M, and an isomorphism
¢:V = TpM so that ¢*gp = (-, ).

1.1 Notational Conventions

In addition to the notation introduced here, more notation will be intro-
duced subsequently as needed; a summary of the common notational con-
ventions used in this book is to be found at the end just before the bibli-
ography. Let M be a smooth manifold of dimension m > 4; there are often
similar results in dimensions m = 2 and m = 3 that we will sketch in pass-
ing. Let V be a real vector space of dimension m. Let V* be the associated
dual vector space. We shall let {e;} be a basis for V and we shall let {e’}
be the associated dual basis for V*; when we wish to consider orthogonal
bases, we will make this explicit. Setting z* := €’(-) defines coordinates
(z',...,z™) on V. Let 8., := 6%1‘ Adopt the FEinstein convention and
sum over repeated indices. We say that © = ¢'0,, is a coordinate vector
field if the coefficients ¢’ are constant; this notion is independent of the
particular basis chosen for V. If 2 € @2V* and if #* € ®*V*, we expand

0 =0%e' ®e’ and 6' =0} '@ @ @€

to define the components of these tensors. In defining tensors, if there are
obvious Zy symmetries, we will often only give the non-zero components
modulo these symmetries. Let GL be the general linear group; this is the
group of all invertible linear transformations of V. If § € ®*V* and if
T € GL, we define T*6 € @*V* by:

(T*6)(v1,...,vk) :=60(Tvy,...,Tvg). (1.1.a)
Similarly if § € @*V* @ V, we define
(T*0)(v1,...,vk) := T710(Tvy, ..., Tug). (1.1.b)

There is a direct sum decomposition of V* ® V* into irreducible modules
where the structure group is the general linear group:

V*eV*=A’¢ S?
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as the sum of the alternating tensors A? of rank two and the symmetric
tensors S? of rank two. If § € V*®V*, this decomposition yields 6 = 6, +6;
where 0, € A% and 0, € S? are defined by setting: '

ea(-’r’ y) = %{9(.’1,‘, y) - g(y,z)},
Os(z,y) = %{0(.’17, y) + 9(y1x)}

More generally, let A* and S* be the space of all alternating and symmetric
tensors of degree k, respectively.

Fix a non-degenerate inner product (-,-) of signature (p,q) on V. We
are in the Riemannian setting if p = 0 or, equivalently, if (-,-) is positive
definite. Similarly, we are in the Lorentzian setting if p = 1. The neutral
setting p = q also is important. The pair (V, (-,-)) is called an inner product
space. The associated orthogonal group O = O(V, (-,-)) is given by:

O:={Te€GL:T*"(,") = (-,")}.

(1.1.c)

There is a natural extension of (-,-) to ®*V which will play a central role
in our development and which we introduce here:

Definition 1.1.1 Let V* denote the Cartesian product V x --- x V. If
7= (v1,...,vx) and @ = (wy, ..., wy) are elements of V¥, the map

U X W — (v1,wy) ... (g, wk)

is a bilinear symmetric map from V* x V¥ to R which extends to a symmet-
ric inner product that is the extension of (-, -) to ®*V. If {e;} is an orthonor-
mal basis for V and if I = (41, ...,%x) is a multi-index, let e; := €;, ®- - -®e;, .
The collection {es} 7| forms a basis for ®*V with

B 0 ifI#K
<eI’€K>_{<eilve‘i1>"'<e‘ik’eik) ifI:K}

Since (er,er) = %1, (-,-) is non-degenerate on ®*V. The orthogonal group
O extends to act naturally on ®*V and preserves this inner product.

We may use (-,-) to identify V with V* and extend (-,-) to tensors of
all types; the natural action of O on such tensors then preserves this inner
product. For example, let £;; := (e;, €;) give the components of the inner
product relative to an arbitrary basis {e;} (which need not be orthonormal)
for V. The inverse matrix ¥/ then gives the components of the dual inner
product on V* relative to the dual basis {e*} for V*:

el = (€', €).
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The following is a useful identity that will play a central role in many of
our calculations:

€9(v,e;)e; =v and (e ej) = m. (1.1.d)
If A€ ®*V*, we define Ricci contractions:

pr2(A)k =Y A,  p13(A)ji := e* Ayjir,
p1a(A)jk =" Aijut,  pas(A)a = 7% Aji, (1.1e)
p2a(A)ik := €' Ajjra,  pas(A)ij == e Ayji.

We set p = p14. These contractions are O but not GL invariants. Similarly,
if A€ ®2V*®End(V), we define:

p(A)jk = .Aijki =Tr(z = A(z,z)y);

this contraction does not depend on the inner product. We use Equa-
tion (1.1.c) to decompose p = p, + ps as the sum of the alternating Ricci
tensor and the symmetric Ricci tensor. The terminology that we will use is
motivated by the geometric setting. Therefore, the trace of the Ricci tensor
is called the scalar curvature; it is given by setting:

T = EusjkAijkl = €jk.Aijki.
Definition 1.1.2 Let (V,(-,-)) be an inner product space.

(1) We say that J_ € GL is a complez structure on V if J?2 = —1Id; if
in addition J*{(-,-) = (-,-), then J_ is said to be a pseudo-Hermitian
complez structure and the triple (V, (-,-),J_) is said to be a pseudo-
Hermitian vector space. Such structures exist if and only if (V,(:,-))
has signature (p, g) where both p and g are even. The associated Kahler
form s given by setting Q_ (z,y) := (z, J_y). We shall often let Q@ = Q_
when the context is clear.

(2) We say that J; € GL is a para-complez structure if J2 = Id and if
Tr(J4) = 0. This latter condition is automatic in the complex setting,
but must be imposed in the para-complex setting. If J}(-,-) = —(-,-),
then J is said to be a para-Hermitian complex structure and the triple
(V,(-,+),J+) is said to be a para-Hermitian vector space. Such struc-
tures exist only in the neutral signature p = q. The associated para-
Kahler form is given by setting Q4 (z,y) := (z,J;y). Again, we shall
often set Q@ = Q.
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If g is a smooth symmetric non-degenerate bilinear form on the tan-
gent bundle TM of a smooth manifold M, then (M, g) is called a pseudo-
Riemannian manifold. If J_ is an endomorphism of T'M with J2 = —1d,
then J_ is said to be an almost complex structure on M and the pair (M, J_)
is said to be an almost complex manifold; necessarily m = 2m is even. The
classic integrability result (see [Newlander and Nirenberg (1957)]) is sum-
marized in Theorem 3.4.2. We say that J_ is an integrable complez structure
and that (M, J_) is a complex manifold if the Nijenhuis tensor

N_(z,y) = [z,y] + J_[J_z,y] + J_[z, J_y] — [J-z, J_y] (L.1.f)

vanishes or, equivalently, if in a neighborhood of any point of the manifold
there are local holomorphic coordinates (z',...,z™ y!,...,y™) so that we
have J_9,, = 8y, and J_8,, = —0,,. If J*g = g, then (M, g, J_) is called
an almost pseudo-Hermitian manifold; (M,g,J_) is said to be a pseudo-
Hermitian manifold if J_ is an integrable complex structure.

Similarly, following [Cortés et al.(2004)], we say that (M,.Jy) is an
almost para-complex manifold if J, is an endomorphism of 7'M such that
J2 =1d and Tr(J4) = 0; necessarily m = 2m is even. One says J is an
integrable para-complex structure if the para-Nijenhuis tensor

Ny(z,y) = [z,y] = I [J42,y] — Ty [z, Jyyl + [Jiz, J4y) (1.1g)

vanishes or, equivalently (see Theorem 3.4.3), if in a neighborhood of
any point of the manifold there are local para-holomorphic coordinates
(..., 2™ y',...,y™) so that we have J;8,, = 9,, and J 9, = O,,.
If J3g = —g, then (M, g, Jy) is said to be an almost para-Hermitian man-
ifold; if J is an integrable para-complex structure, then (M, g, J;) is said
to be a para-Hermitian manifold.

The vanishing of N. imposes additional curvature restrictions called
the Gray identity that will be discussed presently in Theorem 1.9.1 in the
complex and in the para-complex settings.

We present a few general purpose references which may provide basic
background information in some areas and appologize in advance if your
favorite is missing: [Besse (1987)], [Bourbaki (2005)], [Chevalley (1946)],
[Cruceanu, Fortuny, and Gadea (1996)], [Eisenhart (1927)], [Eisenhart
(1967)], [Evans (1998)], [Ferus, Karcher, and Miinzer (1981)], [Frobenius
(1877)], [Fukami (1958)], [Fulton and Harris (1991)], [Garcia-Rio, Kupeli,
and Vézquez-Lorenzo (2002)], [Gilkey (2001)], [Iwahori (1958)], [Kobayashi
and Nomizu (1969)], [Newlander and Nirenberg (1957)], [Nomizu (1956)],



