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Preface

This book is the outgrowth of a one-semester course which has been
taught for several years at the Massachusetts Institute of Technology
to seniors and graduate students in chemistry. The treatment of the sub-
ject matter is unpretentious in that I have not hesitated to be mathemat-
ically unsophisticated, occasionally unrigorous, or somewhat prolix,
where I felt that this really helps to make the subject more meaningful
and comprehensible for the average student. By the average student, I
mean one who does not aspire to be a theoretician but who wants to
have a feel for the strategy used by theoreticians in treating problems in
which symmetry properties are important and to have a working knowl-
edge of the more common and well-established techniques. I feel that
the great power and beauty of symmetry methods, not to mention the
prime importance in all fields of chemistry of the results they give, make
it very worthwhile for all chemists to be acquainted with the basic prin-
ciples and main applications of group theoretical methods.

Despite the fact that there seems to be a growing desire among chem-
ists at large to acquire this knowledge, it is still true that only a very few,
other than professional theoreticians, have done so. The reason is not
hard to discover. There is, so far as I know, no book available which is
not likely to strike some terror into the hearts of all but those with an
innate love of apparently esoteric theory. It seemed to me that ideas of
the sort developed in this book would not soon be assimilated by a wide
community of chemists until they were presented in as unpretentious
and down-to-earth a manner as possible. That is what I have tried to do
here. I have attempted to make this the kind of book which “one can
read in bed without a pencil,”” as my colleague, John Waugh, once aptly
described another textbook which has found wide favor because of its
down-to-earth character.*

* This statement is actually (and intentionally) not applicable to parts of Chapter 3
where I have made no concessions to the reader who refuses to inspect steric models
in conjunction with study of the text.
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Y Preface

Perhaps the book may also serve as a first introduction for students
intending to do theoretical work, giving them some overall perspective
before they aim for depth.

I am most grateful for help I have received from many quarters in
writing this book. Over the years students in the course have offered
much valuable criticism and advice. In checking the final draft and the
proofs I have had very welcome and efficient assistance from Dr. A. B.
Blake and Messrs. R. C. Elder, T. E. Haas, and J. T. Mague. I, of course,
assume sole responsibility for all remaining errors. Finally, I wish to
thank Mrs. Nancy Blake for expert secretarial assistance.

F. ALBerT CoTTON
Cumbridge, M assachusetts
January, 1963
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Introduction

Wi

The experimental chemist in his daily work and thought is econcerned
with observing and, to as great an extent as possible, understanding and
interpreting his obseryations on the nature of chemical compounds.
Today, chemistry is a V43t subject. In order to do thorough and produc-
tive experimental work, one must know so much descriptive chemistry
and so much about experimental techniques that thereg;s not time to, be
ggg’so a ffiakter of chemical theory. Theoretical work of pfofound and creal

ive nature requires a vas%jraining in mathematics and physics which
it is now the busifless of specialists to deéal with. And yet, if one is to do
more, than merely perform experiments, one must have some thegretical
fratdwork for thought. In order to formulate experiments imagin&tivily
and interpret them correctly, an understanding of the ideas provided by
theory as to the behavior of molecules and other arrays of atoms is es-
sential.

The problem jn educating student chemists—and in educating our-
selves—is to c;%ége what kind of theory and how much of it is ‘ggsirablf.
In other words, to what extent can the experimentalist ditsrd 'to sﬁfé’nd
time on theoretical studies and at, what point should he say, “beyond
this T have not the time or inthination to go”? The answer to this ques-
tion must of course vary with the special field of experimental work ﬁ;}d_
with the individual. In some areas fairly advanced theory is indispenss’
ble. In others relatively little is really useful. For the most part, however,
it seems fair to say that molecular quantum mechanics, that is, the theory
of chemical bonding and molecular dynamics, is of general importance.

As we shall see in Chapter 5, the number and kinds of energy levels

. . e )
which an atom or molecule may have are mgpgonsly and pregisely deter-
mined by the symmetry of the molecule or of the enviég1 &fvof the
atom. Thus, from symmetry considerations alone, we can always tell
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4 Chemical Applications of Group Theory

what the qualitative féatures of a problem must be. We shall know, with-
out any quantitative calculations whatever, how many energy states
there are and what interactions and transitions between them may occur.
To put it another way, symmetry considerations alone can give us a
complete and rigorous answer to the question ‘“What is possible and what
is completely impossible?”’ Symmetry considerations alone cannot, how-
ever, tell us how likely it is that the possible things will actually take
place. Symmetry can tell us that, in principle, two states of the system
must differ in their energy, but only by computation or measurement can
we determine how great the difference will be. Again, symmetry can tell
us that only certain absorption bands in the electronic or vibrational
spectrum of a molecule may occur. But to learn where they will occur
and with what intensity, calculations must be made.

Some illustrations of these statements may be helpful. Let us choose
one illustration from each of the four major fields of application which
are covered.in Part IT. In Chapter 6 the method of constructing hybrid
orbitals will be explained. It will be shown, inier alia, that a set of sp®d
hybrid orbitals will form bonds directed to the apices of a trigonal bi-
pyramid if the d orbital used is d,» whereas the set will form good bonds
to atoms at the apices of a square pyramid if the d orbital used is d,_,2
or dzy. The connection between the symmetry of the resulting set of
hybrids and the d orbital used is absolutely rigorous on the basis of sym-
metry alone, but only by calculations (which are not practicable at
present) could we détermine which set of hybrids and hence which sym-
metry would be favored in a particular molecule. In Chapter 7 the sym-
metry and some other properties of molecular orbitals will be discussed.
It will be shown, for example, that in symmetrical molecules the calcula-
tion of the energies of pi molecular orbitals can be accomplished by solv-
ing several sets of very small equations rather than one large equation,
but the numerical accuracy of the results will still depend on how much
labor we wish to put into computations. In Chapter 8, using symmetry
arguments and only the most elementary quantitative considerations,
we will learn how to construct energy level diagrams, which tell us a
great deal about the order of the levels and the qualitative features of the
spectra of the ions, for metal ions in ligand fields. Finally, in Chapter 9
it will be shown that using symmetry considerations alone we may pre-
dict the number of vibrational fundamentals, their activities in the infra-
red and Raman, and the way in which the various bonds and interbond
angles contribute to them for any molecule possessing some symmetry.
The actual magnitudes of the frequencies depend on the interatomic
forces in the molecule, and these ¢annot be predicted from symmetry
properties.



Indroduction 5

The main purpose of this book is to describe the methods by which we
can extract the information which symmetry alone will provide. An
understanding of this requires only a superficial knowledge of quantum
mechanics. In several of the applications of symmetry methods, however,
it would be artificial and stultifying to exclude religiously all quantitative
considerations. Thus, in the chapter on molecular orbitals, it is natural
to go a few steps beyond the procedure for determining the symmetries
of the possible MO's and explain how the requisite linear combinations
of atomic orbitals may be written down and how their energies may be
estimated. It also appeared desirable to introduce some quantitative
ideas into the treatment of ligand field theory.

It has been, necessarily, assumed that the reader has some prior famil-
iarity with the basic notions of quantum theory. He is expected to know
in a general way what the wave equation is, the significance of the Hamil-
tonian operator, the physical meaning of a wave function, and so forth,
but no detailed knowledge of mathematical intricacies is presumed. Even
the contents of a rather qualitative book such as Coulson’s Valence
should be sufficient, although, of course, further background knowledge
will not be amiss.

The following comments on the organization of the book may prove
useful to the prospective reader. It is divided into two parts. Part I,
which includes Chapters 1 through 5, covers the principles which are
basic to all of the applications. The applications are described in Part II,
embracing Chapters 6 through 9. The material in Part I has been written
to be read sequentially. That is, each chapter builds on the material
developed in all preceding chapters. Part II, however, is written so that
each chapter is independent of all other chapters in Part II, although
each one, of course, depends on all of the material in Part I. The only
exceptions to this statement are a few instances in which quantum prin-
ciples are equally necessary in two places. They are given only once
and in the second instance a reference is made to the first. This arrange-
ment is advantageous to a reader whose immediate goal is to study only
one particular area of application, since he can proceed directly to it,
whichever it may be; it also allows the teacher freedom in selecting
which applications to cover in a course too short to cover all of them, or
to take them all but in an order different from that chosen here.



Basic Definitions and Theorems

of Group Theory

2.1 The Defining Properties of a Group

A group is a collection of elements which are interrelated according to
certain rules. We need not specify what the elements are or attribute
any physical significance to them in order to discuss the group which
they constitute. In this book, of course, we shall be concerned entirely
with the groups formed by the sets of symmetry operations which may
be carried out on molecules, but the basic definitions and theorems of
group theory are far more general. '

In order for any set of elements to form a mathematical group, the
following conditions or rules must be satisfied.

1. The product of any two elements in the group and the square of each
element must be an element in the group. In order for this condition to
bave meaning, we must, of course, have agreed on what we mean by
the terms “multiply” and “product.” They need not mean what they
do in ordinary algebra and arithmetic. Perhaps we might say “combine”
instead of “multiply” and “combination” instead of “product” in order
to avoid unnecessary and perhaps incorrect connotations. Let us not
yet commit ourselves to any particular law of combination, but merely
say that if A and B are two elements of a group, we indicate that we are
combining them by simply writing AB or BA. Now immediately the
question arises if it makes any difference whether we write 4B or BA.
In ordinary algebra it does not, and we say that multiplication is com-
mutative, that is, xy = yx, or 3 X 6 = 6 X 3. In group theory, the
commutative law does not in general hold. Thus AB may give C while
BA may give D where C and D are two more elements in the group.
There are some groups in which combination is commutative, and such
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Basic Definitions and Theorems of Group Theory 7

groups are called Abelian groups. Because of the fact that multiplication
is not in general commutative, it is sometimes convenient in speak-
ing to have a means of stating whether an element B is to be mul-
tiplied by A in the sense AB or BA. In the first case we can say that B
is left-multiplied by A and in the second case that B is right-multiplied
by A.

2. One element in the group must commule with all the others and leave
them unchanged. It is customary to designate this element with the letter
E and it is usually called the identity elemeni. Symbolically we define it
by writing EX = XE = X.

3. The associative law of multiplication must hold. This we may write as

A(BC) = (AB)C

In plain words, we may combine B with C in the order BC and then com-
bine this product, S, with 4 in the order ‘AS, or, we may combine A with
B in the order AB, getting a product, say R, which we then combine
with C in the order RC and get the same final product either way. In
general, of course, this must hold for the continued product of any num-
ber of elements, viz.,

(AB)(CD)(EF)(GH) = A(BC)(DE)(FG)H = (AB)C(DE)(FG)H - - -

4, BEvery element must have a reciprocal, which is also an element of the
group. The element R is the reciprocal of the element S if RS = SR = E,
where E is the identity. Obviously, if R is the reciprocal of S, then S is
the reciprocal of R. Also, E is its own reciprocal. :

At this point we shall prove a small theorem concerning reciprocals
which will be of use later. The rule is:

The reciprocal of a product of two or more elements is equal to the product
of the reciprocals, in reverse order. This means that

(ABC --- XY) ' =Y7IX"1...C'1B714!

PrOOF. For simplicity we shall prove this for a ternary product, but it
will be obvious that it is true generally. If A, B, and C are group ele-
ments, their product, say D, must also be a group element, viz.,

ABC =D

If now we right-multiply each side of this equation by C"1B™A~} we
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obtain ABCC—'B—'A! = DC-'B—14~!

ABEB™'A™''= DC'B7'A™}!

E = DC7'B™1A™?

Since D times C™'B'A™! equals E, C"'B~14A ! is the reciprocal of
D, and since D equals ABC, we have

~! = (ABC)™! = ¢T'B747!

which proves the above rule.

2.2 Some Examples of Groups

Groups may be either finite or infinite, that is, they may contain a
limited or unlimited number of elements. The symmetry groups with
which we shall be concerned are mostly finite, but two, namely those to
which linear molecules may belong, are infinite. The number of elements
in a finite group is called its order, and the conventional symbol for the
order is h. To illustrate the above defining rules, we may consider both
an infinite and a finite group.

As an infinite group we may take all of the integers, both posmve
negative and zero. If we take as our law of combination the ordinary
algebraic process of addition, then rule 1 is satisfied. Clearly, any integer
may be obtained by adding two others. Note that we have an Abelian
group since the order of addition is immaterial. The identity of our group
is 0, since 0 + n = n + 0 = n. Also, the associative law of combination
holds, since, for example, [(+3) + (—7)] + (+1043) = (+3) + [(=7)
+ (41043)]. The reciprocal of any element, n, is (—n) since (+n) +
(—n) = 0.

As another example of a group, this a finite one of order six, let us take
the set of elements E (the identity), 4, B, C, D, F. A consideration of the
defining rules will show that every group has what we may call a multipli-
cation table, that is, a tabular array of all the one-against-one or binary
combinations of group elements. The multiplication table for the above
group of six elements we shall take to be the following one, with the con-
vention that each entry is the combination of the element at the top of
its column with that at the left of its row in the order (column) (row).
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Since inspection of the table shows that this group is not Abelian, it is
obviously necessary that the above order of combination be specified
and that it be remembered in using the multiplication table subse-

quently. EABCDTF
E|EABCDTF
A|AEDFBC
B|BFEDCA4
C| CDFEAB
D|DCA4ABFE
F| FBCAED

Let us observe that this table has certain features which are necessary
consequences of the defining rules. If it did not have them, we should be
forced to conclude either that the set of elements did not actually con-
stitute a group or, if the set does actually constitute a group, that a mis-
take had been made in working out the table.

(i) Note that each column and each row is a shuffled list of the ele-
ments, each occurring once and only once. That this must be so is easily
seen if we consider, for instance, a column. The six entries in this column,
say the column under C, are CE, CA, CB, CC, CD, CF. If any two prod-
ucts were the same, say the product of CA and CF, then we could write
CA = CF, which would necessarily mean A = F. Thus two elements
in the group would be identical, and thus two entire columns and two
entire rows would have to be identical. This is not true, so we have
shown that the initial assumption must be an impossibility.

(i) Note that the products E are either on the diagonal or placed
symmetrically with respect to it. This is because either an element is its
own réeciprocal (as for E, A, B, and C), or, in this case, since D is recip-
rocal to F, F is reciprocal to D.

(iii) The identity occurs only once in each column or row, because
each element can have only one reciprocal. This is merely a special case
of (i) above.

There are other. features of this particular table which are not general,
but specific to this group, such as the nonexistence of any commutative
multiplications other than those involving E or producing E.

One special kind of group, of which there are many representatives
among the symmetry groups, is the cyclic group. This is a set of elements
X, X%, X3 X*... X" such that X® = E. It may be noted that a cyelic
group must be Abelian. The set of elements X, X2 ... X!, X*, where
n is a number such that X®*! = X, is called the period of the element X,
and this entire set of n elements may be symbolized by {X]}.
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2.3 Subgroups

Inspection of the multiplication table for the group EABCDF, given
above, will show that within this group of order 6 there are smaller
groups. E in itself is a group of order 1. This will, of course, be true in
any group and is trivial. Of a nontrivial nature are the groups of order
2, viz., E, A; E, B; E, C; and the group of order 3, viz., E, D, F. The last
should be recognized also as a cyclic group since D* = F, D?® = DF =
FD = E; it is thus a cycle of D, namely D, D? and D® = E. But to re-
turn to the main point, these smaller groups which may be found within
a larger group are called subgroups. There are, of course, groups which
have no subgroups other than the trivial one of E itself.

Let us now consider whether there are any restrictions on the nature
of subgroups, restrictions which are logical consequences of the definition
and not of any additional or special characteristics of a particular group.
Indeed there are. We may note that the orders of the group above and its
subgroups are 6 and 1, 2, 3; in short, the orders are all factors of the
order of the main group. We shall now prove the theorem that:

The order of any subgroup, g, of a group of order h must be a divisor of h.

In other words, /g = k with k some integer.

PROOF. Suppose the set of g elements, Ay, Ao, A3 . .. A,, form a subgroup.
Now let us take another element B in the group which is not a member
of this subgroup and form all of the g products: BA,, BA, ... BA,. No
one of these products can be in the subgroup. If, for example,

BAz == A4

then if we take the reciprocal of A, perhaps 45, and right-multiply the
above equality we obtain

BAgAs = A4ds
BE = A4A5
B = A4A5

But this contradiets our assumption that B is not a member of the sub-
group A;, Az ... A, since A44 5 canonly be one of the A;. Hence, if all
the products BA; are in the large group inaddition to the A ; themselves,
there are at least 29 members of the group. If & > 2g, we can choose
still another element of the group, namely C, which is not one of the A;
or one of the BA;, and on multiplying the A; by C we will obtain ¢
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more elements, all members of the main group, but none members of
the A; or of the BA, sets. Thus we now know that 2 must be at least
equal to 3g. Eventually, however, we must reach the point where there
are no more elements by which we can multiply the A; which are not
among the sets A;, BA;, CA;, and so forth, already obtained. Suppose
after having found k such elements, we reach this point where there are
no more. Then h = kg, where k is, of course, an integer. Then h/g = k,
which is what we set out to prove. While we have shown that the order
of any subgroup, g, must be a divisor of s, we have not proved the con-
verse, namely that there are subgroups of all orders which are divisors
of h, and, indeed, this is not in general true. Moreover, as our illustra-
tive group proves, there can be more than one subgroup of a given
order.

2.4 Classes

We have seen that in a given group it may be possible to select various
smaller sets of elements, each such set including E, however, which are in
themselves groups. There is another way in which the elements of a
group may be separated into smaller sets, and such sets are called
classes. Before defining a class we must consider an operation known as
similarity transformation.

If A and X are two elements of a group, then X *A X will be equal to
gome element of the group, say B. We have

B =X"1AX

We express this relation in words by saying that B is the similarity
transform of A by X. We also say that A and B are conjugate. The follow-
ing properties of conjugate elements are important.

(i) Every element is conjugate with itself. This means that if we choose
any particular element, 4, it must be possible to find at least one ele-
ment, X, such that

A =X14X

If we left-multiply by A~ we get
A7 = E = A7'X'AX = (X4)H(AX)

which can only hold if A and X commute. Thus the element X may al-
ways be E, and it may be any other element which commutes with the
chosen element, A.



