

= Structure

2l ClO0B O

THIRD EDITION

Gerard A. Paquette

glfw Irwin]
fid McGraw-Hill

Boston, Massachusetts Burr Ridge, Illinios Dubuque, lowa
Madison, Wisconsin New York, New York San Francisco, California St. Louis, Missouri

Irwin/McGraw-Hill

A Division of The McGraw-Hill Companies

Vice President and Publisher Susan A. Simon
Acquisitions Editor Paul Ducham

Managing Developmental Editor Linda Meehan Avenarius
Advertising/Marketing Coordinator Jennifer Wherry
Product Development Assistant Sandy Ludovissy

Chief Executive Officer G. Franklin Lewis

Corporate Senior Vice President and Chief Financial Officer Robert Chesterman
Corporate Senior Vice President and President of Manufacturing Roger Meyer
Executive Vice President/General Manager, Brown & Benchmark Publishers Tom Doran
Executive Vice President/General Manager, Wm. C. Brown Publishers Beverly Kolz

Names of all products mentioned herein are used for identification purposes only and may be
trademarks and/or registered trademarks of their respective owners. Business and Educational
Technologies and Wm. C. Brown Communications disclaim any affiliation, association, or
connection with, or sponsorship or endorsement by such owners.

The credits section for this book is on page 838, and is considered an extension of the
copyright page.

Cover design by Sailer & Cook Creative Services

Copyright ©1989, 1991, 1994 by Wm. C. Brown Communications, Inc.
All rights reserved

Library of Congress Catalog Card Number: 93-73870

ISBN 0-697-12394-4

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording, or otherwise without the

prior written permission of the publisher.

Printed in the United States of America

1098765

H Preface

This text is written for the student who wants to develop effective problem-solving techniques while learning
structured COBOL programming. It contains a number of features that make it stand out from other available
texts.

Bl Problem-Solving Procedure

A time-tested problem-solving procedure is presented and explained in the very first chapter, and then the
“Turbo Manufacturing Company Employee Listing” program is used immediately to show the procedure in
actual use. Every original program presented in the text is also systematically developed following the steps
specified in the procedure.

Many textbooks do suggest a systematic approach to programming, but more often than not, the
systematic approach is not used later in the text to develop sample programs, no further reference is made
to it, and if students use it at all, it is on their own initiative. Since developing an effective approach to
problem solving is so crucial to a novice programmer, repeated exposure to a specific method that is used
in a consistent manner will go a long way toward achieving that goal. The net result is that the student retains
the procedure as a productive “working” tool in later programming situations.

H Problem-Oriented Approach

The text follows a problem-oriented approach. This approach allows the development of COBOL statements
and features to be presented on a “need to know” basis, where they are applied immediately in the situation
being discussed. The sample problems that have been selected as vehicles for the introduction of COBOL
language features are presented at the very beginning of the chapter, thus setting the stage for what is to
come in the rest of the chapter.

In Chapter 2, the program “Allied Stock Company Phone Sales Report” is presented and developed
primarily to expose the students to the major functions of the four divisions of a COBOL program.

In Chapter 3, the same program is used as a vehicle to expand upon the features of the
IDENTIFICATION DIVISION, the ENVIRONMENT DIVISION, and the DATA DIVISION. In Chapter 4, it is used
to elaborate upon the features of the PROCEDURE DIVISION.

In Chapter 5, a new program, “Reliable Auto Parts Company Payroll Report,” is presented and
developed as a tool to introduce arithmetic statements, since the preparation of a payroll requires a number
of arithmetic operations.

In Chapter 6, the program of Chapter 5 is expanded to prepare a summary payroll report that contains
totals and averages for the company. The same program is then revised to include refinements in both the
program and the printed report.

In Chapter 7, the program “Jocelyn Originals Company Annual District Sales Report” prepares a
summary report by district. Because the records of the input file are in alphabetical order, the district code
must be tested so that the sales figures can be added to the appropriate district accumulators. This leads
into a discussion of conditional statements—simple, compound, and nested. Once the report has been
produced, an alternative approach is developed to illustrate the use of CORRESPONDING statements and
qualification of data names. Since the setting of the problem remains the same, students can more easily
concentrate their attention on the new features.

In Chapter 8, two programs are presented to illustrate important applications of conditional state-
ments. The “Sportsman Company Sales Analysis Report” program serves as an introduction to control

breaks. One-level control breaks are examined first, and the program is then expanded to illustrate two-level
control breaks. The “Sportsman Company Data Validation Report” program is then developed to examine
various data validation procedures.

In Chapter 9, the “Monster Burger Stores Weekly Payroll Report” program has been designed to
require the use of input-loaded and hard-coded tables. Its development leads into discussions of table
organizations, levels in a table, table-loading procedures, and table-data retrieval procedures.

In Chapter 10, variations of the “Sportsman Company Sales Report” program are used to illustrate all
the possible combinations of options of the SORT statement. PROCEDURE DIVISION sections are
introduced in relation to the SORT statement. A final program is used to illustrate the MERGE statement.

In Chapter 11, the Jocelyn Originals Company provides a setting for the development of programs that
create master files on tape or on disks. These files have sequential organization. Indexed files and relative
files are also introduced, but complete programs are not included since the sequel to this book examines
these two file organizations in detail.

Structured Programming Tools

Built into the design phase of the problem-solving procedure is the use of tools that result in structured
programs. The system flowchart specifies the overall task of the program, in addition to identifying the
required files. The structure chart begins with the overall task as its primary module, and then breaks it down
into major subtasks, one per module. These major subtasks are further subdivided as needed, until the
question “What has to be done?” is completely answered. The program pseudocode or the program
flowchart then details the procedures that answer the question “How is the task to be done?”

In the structure chart, the first-level, or primary, module is numbered 100, the second-level modules
are numbered consecutively from left to right in the 200s using increments of 10, the third-level modules are
similarly numbered in the 300s, and so on for the remaining levels. If a particular module is needed at
different levels in the structure chart, every occurrence of the module is assigned the number of the lowest
level where it is needed, and the upper right-hand corner is darkened to clearly indicate its repetitive nature.

The paragraphs of the pseudocode and the modules in the flowchart retain the numeric prefixes and
names first assigned in the structure chart. The paragraph names in the PROCEDURE DIVISION are then the
same as those of the pseudocode or flowchart. Furthermore, by coding the paragraphs in ascending order
of their numeric prefixes, program debugging is greatly facilitated, since the programmer can quickly scan
margin A to locate a particular paragraph.

COBOL ’85 Standards

The text implements the standards of COBOL '85. A student who learns the language as presented in this
text will be well-prepared to write programs that include up-to-date syntax and structure. However, since
most of COBOL '74 is still supported in the COBOL 85 standards, and since the new features are identified
as such within the text, this text remains appropriate for use by students who are currently using a COBOL
'74 compiler, and these students will have a handy reference when they first encounter a COBOL '85
compiler. Naturally, the new features cannot be incorporated in programs to be compiled by a '74 compiler,
and features that are currently labeled as obsolete may be required entries. (Obsolete entries are not used
in the sample programs of this text.)

Debugging Activities

Debugging exercises have been included at the end of every chapter. They are listed following the more
traditional “review and practice” exercises and before the programming exercises. They include debugging
data entry errors, misaligned entries on a printed report, data description errors that do not conform to
prepared layouts, compiler-generated syntax errors, coding errors that do not represent the logic specified
in either pseudocode or flowchart form, numeric and/or numeric-edited data description coding errors,
errors in mathematical statements or expressions, errors related to missing data or incorrect values on a
printed report, printed report errors related to incorrect handling of control breaks, coding errors related to
table definitions, table loading, and data retrieval, sorting errors due to improperly sequenced keys, and
control errors related to the use of sections within the PROCEDURE DIVISION.

These exercises are designed to draw attention to common errors and some less common ones.
Students who successfully complete these exercises should be able to avoid making the same types of
errors in their own programs.

Preface

H Programming Assignments

There are four programming assignments at the end of each chapter, beginning with Chapter 3. In the spirit
of “leading the student by the hand,” the student is presented with the completed design phase of the
problem-solving procedure in the first assignment; that is, the input record layout form and the printer
spacing chart are prepared, and the system flowchart, the structure chart, and the program pseudocode and
flowchart are completely developed. After studying these aids, the student can quickly move to the completion
of the task—coding the program, debugging it as needed, and running it with a sample data file.

In the second assignment, the design phase of the problem-solving procedure is completed for the
student except for the program pseudocode and the program flowchart. The student’s task is to complete the
design phase, and then implement the design.

The third and fourth assignments are full-scale assignments. The student must design the program
“from scratch,” and then carry out the implementation of the design.

Data sets for all programming assignments are provided in Appendix C, and are also available on
magnetic disks for the convenience of instructors and students.

H Program Documentation

All sample programs contain a number of documentation paragraphs in the IDENTIFICATION DIVISION.
The student is aided in verbalizing the nature of the task that the program must accomplish by being
expected to properly document the listing of the program. The better the task is defined, the easier it is to
map out an appropriate strategy. Few textbooks provide this type of documentation or encourage students
to do so.

H Listing of Rules

Whenever COBOL language elements and statements are introduced, explained, and illustrated in a section
of a chapter, all of the applicable rules are collected and summarized within that same section under a title
beginning with “Rules Governing Use of....” Students will find these sections convenient because
everything they need to know about the feature or statement is there, assembled in one place. A list of these
rules sections, complete with page references, is printed at the front of the book on page ix. The colored
tabs that are visible on page edges mark the locations of these rules in the text.

H Course Organization

There is ample material in this text for a quarter or a semester's work in a course that might be entitled
“Structured COBOL Programming |.” It is not intended as a complete treatment of the COBOL language, but
rather as an effective teaching/learning tool for the developing programmer. The sequel to this text,
Advanced Structured COBOL, takes the student into more advanced table handling, file organizations,
master file updating procedures, subprograms and nested programs, and also introduces on-line interactive
COBOL programs, even though a screen-handling facility is not yet included in ANSI COBOL Standards. A
Report Writer supplement is also available upon request.

B Ancillaries

The following ancillary materials have been prepared for the convenience of instructors using this text:

a. An Instructor’'s Manual that contains, for each chapter, an overview of the chapter, a discussion of
the particularly significant topics of the chapter, some suggested coordinated activities for the
student, answers to all the chapter exercises, solutions to all the debugging activities, and a
complete set of solutions for all the programming exercises.

b. A complete set of transparency masters.

c. TestPak, a computerized testing program that an instructor can use in constructing class tests
quickly and efficiently. TestPak is a computerized system that enables you to make up customized
exams quickly and easily. For each exam, you can select up to 250 questions from the file and either
print the test yourself or have Business and Educational Technologies print it.

d. A Data Disk that contains the data files used in the chapter sample programs and in the debugging
activities programs, and data files that can be used as test data for all the programming exercises.

Preface

e. Source code disks that contain:

i. The source code for all the chapter sample programs.
ii. The source code for the programs used in the debugging activities at the end of each chapter.
The source code for the completely debugged programs are also included.
iii. The source code for the programs that must be developed in the programming exercises at the
end of each chapter.

These source code disks allow instructors to make changes to existing programs, thereby
customizing the programs to their own needs without a major effort on their part.

B Software

Structured COBOL can be purchased with the following excellent software packages:
a. The RM/COBOL-85 Educational Version Compiler, which offers complete language functionality,

screen handling capabilities, and an application development environment. A Convenience Disk is
included in the textbook for students who also purchase the RM/COBOL-85 Compiler for use on their
personal computer. This disk contains the source code for the programs in the debugging exercises
at the end of each chapter. It also contains all the data sets used in the chapter sample programs
and the data sets needed for the programming exercises at the end of each chapter.

Micro Focus Personal COBOL, a full-featured, PC-based package that allows students to write,
compile, debug, and test complete COBOL programs.

B A Final Note

| wish to thank the staff of the Computer Center at the University of Massachusetts—Lowell for their
cooperation whenever their technical assistance was needed.

| also wish to thank the members of my family for their patient understanding during the long

development process, and in particular, my wife, Vivian, for her constant encouragement and support.

B Notes on My Computer

1.
2.

3.

Computer name: Operating system:

Nonnumeric literals must be enclosed in
(quotation marks or apostrophes).

Implementor-names to be used in the ASSIGN clause are:

ANSI COBOL compiler: (1985 or 1974)
Procedures to log on to my system:

System commands to edit a file:

. Commands to “run” a program:

Preface

H Contents

Handy Reference to Rules ix
Preface x

Introduction 2

Historical Development of
Computers 5

Historical Development of COBOL 5
Computers 5

Major Computer Components 6
Input Unit 7
Processor Unit 7
Output Unit 8

Computer Languages 8
Low-Level Languages 8
Intermediate-Level Languages 9
High-Level Languages 9

Computer Systems 11
Processing a Program 13
Conclusion 14

1 The Problem-Solving
Procedure 16

Obijectives You Should Achieve 16
Problem-Solving Procedure 17

Program lllustrating the
Problem-Solving
Procedure 18
Problem 20
Solution 21
The Program Design Phase 21
The Design Implementation
Phase 24
Debugging 34
Data Input to a Cobol Program 34
Important Terms in Chapter 1 36
Exercises 36
Debugging Activities 36
Terminal Exercises 37

2 A First Look at a
COBOL Program 38

Objectives You Should Achieve 38
The Problem 39

Program Design Phase 40
Step 1: Developing a Detailed
Understanding of the
Problem 40
Step 1a. Prepare Layouts of
Input Records 40
Step 1b. Prepare Layouts of
Output Records 41
Step 2: Planning the Solution to the
Problem 42
Step 2a. Determine the Data
Flow (System Flowchart) 42
Step 2b. Develop the Structure
Chart 43
Step 2c. Write the Program
Pseudocode 44
Alternate Step 2c. Design the
Program Flowchart (Alternative
to the Pseudocode) 47

Design Implementation Phase 51
Step 3: Coding the Program 51
Program Coding 52
Program Walk-through 52
Step 4: Keying (or Entering) the
Program 56
Step 5: Debugging the Program
BT
Step 5a. Correct All Syntax
Errors 57
Step 5b. Compile the
Program 58
Step 6: Performing a Test Run of
the Program 58
Step 6a. Run the Program with
a Sample Input File 59
Step 6b. Check the Output 59
Step 7: Assembling the Complete
Package 64

The Divisions of a COBOL
Program 64
IDENTIFICATION DIVISION 64
ENVIRONMENT DIVISION 64
DATA DIVISION 65

FILE SECTION 65

WORKING-STORAGE

SECTION 65
PROCEDURE DIVISION 66

Basic Logic Structures 67
Simple Sequence 67
Selection 68
Iteration 69

Combinations of the Three Simple
Structures 71

The Case Structure 74
Important Terms in Chapter 2 76
Exercises 76

Debugging Activities 84
Terminal Exercises 86

3 The Divisions of a
COBOL Program:
IDENTIFICATION,
ENVIRONMENT,
DATA 88

Objectives You Should Achieve 88
User-Defined Names 89

IDENTIFICATION DIVISION 96

PROGRAM-ID 96

AUTHOR 97

INSTALLATION 97

DATE-WRITTEN 97

DATE-COMPILED 97

SECURITY 97

Use of Asterisk (*) in Program
Documentation 97

Coding the IDENTIFICATION
DIVISION 98

Technical Format Notation 98

ENVIRONMENT DIVISION 99
CONFIGURATION SECTION 99
INPUT-OUTPUT SECTION 100

FILE-CONTROL 100
Coding the ENVIRONMENT
DIVISION 102

DATA DIVISION 103
FILE SECTION 103
The FD Paragraph 104

The 01 Record Description
Entry 105

FILE SECTION Examples 105

Record Field Descriptions 106

More on Numeric, Alphabetic,
and Alphanumeric
Classes 111

PICTURE-Related Issues 112

First Look at Editing Characters
in Output Record Fields 114

Coding the FILE SECTION of
the DATA DIVISION 114

WORKING-STORAGE SECTION

116

01 Elementary Items 116

The VALUE Clause 117

An Alternative to the VALUE
Clause 120

Records in the WORKING-
STORAGE SECTION 121

Adding a Title to the
Report 122

Coding the WORKING-
STORAGE SECTION 125

The General Format of a Data ltem

Entry 126

Important Terms in Chapter 3 126
Exercises 127
Debugging Activities 130

Programming Exercises 134
Programming Exercise | 134
Programming Exercise || 137
Programming Exercise Il 139
Programming Exercise IV 140

4 The Divisions of a
COBOL Program:
PROCEDURE
DIVISION 142

Obijectives You Should Achieve 142

Planning the PROCEDURE DIVISION
143
Paragraph Names 146
Statements and Sentences 146

Coding the PROCEDURE DIVISION
148
The Main-Control Paragraph
100-PRODUCE-PHONE-
SALES-REPORT 148
The PERFORM Statement 149
The PERFORM-UNTIL
Statement 152
The STOP RUN Statement 156
The Second-level Paragraph
200-START-UP 157
The OPEN Statement 158
The MOVE Statement 159
The INITIALIZE Statement 164

vi Contents

The Second-Level Paragraph
210-PROCESS-PHONE-SALE-
RECORD 166

The Second-Level Paragraph
220-FINISH-UP 167

The Third-Level Paragraph
300-WRITE-REPORT-
HEADERS 168

The Third-Level Paragraph
310-READ-PHONE-SALE-
RECORD 172

The Third-Level Paragraph
320-COMPUTE-PHONE-SALE-
AMOUNT 175

The Third-Level Paragraph
330-PREPARE-PHONE-SALE-
LINE 178

Conclusion 180

Important Terms in Chapter 4 180
Exercises 180

Debugging Activities 185

Programming Exercises 188
Programming Exercise | 188
Programming Exercise Il 192
Programming Exercise Ill 193
Programming Exercise IV 194

5 The Arithmetic
Operations: Addition,
Subtraction,
Multiplication 196

Obijectives You Should Achieve 196
The Problem 197

Program Design Phase 197
Step 1 197
Step 2 198
System Flowchart 198
Structure Chart 199
Program Pseudocode 200
Program Flowchart 205

Design Implementation Phase 208
Step 3 208
Issue 1 208
Issue 2 208
Issue 3 208
Comments on Issue 1: Class of
Input Data ltem 209
Comments on Issue 2: Editing
Fields of Output Records 211
Comments on Issue 3: Class of
Working-Storage Data ltems
214
Coding the Procedure
Division 216
The Procedure 210-PROCESS-
EMPLOYEE-RECORD 217
Coding the Procedure
320-COMPUTE-PAYROLL-
ITEMS 218

Back to the Paragraph
320-COMPUTE-PAYROLL-
ITEMS 226

Back to the Paragraph
320-COMPUTE-PAYROLL-
ITEMS 231

Back to the Paragraph
320-COMPUTE-PAYROLL-
ITEMS 234

Coding the Procedure
330-PREPARE-EMPLOYEE-
PAYLINE 235

Correspondence between the
Program Flowchart and the
PROCEDURE DIVISION 236

Design Implementation—
Continued 240
Steps 4 and 5 240
Step 6 243

Important Terms in Chapter 5 245
Exercises 245
Debugging Activities 250

Programming Exercises 255
Programming Exercise | 255
Programming Exercise || 259
Programming Exercise Il 261
Programming Exercise IV 261

6 More Arithmetic: Totals
and Averages 262

Objectives You Should Achieve 262
The Problem 263

Program Design Phase 263
Step 1 263
Step 2 264

Design Implementation Phase 270
Step 3 270
Coding the DATA DIVISION
270
Coding the PROCEDURE
DIVISION 273
Steps 4 and 5 276
Step 6 276

The COMPUTE Statement 283

Program Refinements 286
The USAGE Clause 286
Grouping Report Headers 288
The Trailing Minus Sign 289
Checking for an Empty Data
File 290
Inserting Documentation within
the PROCEDURE DIVISION
291

Report Refinements 295
Vertical Spacing 295
“End of Report” Message 296
Limiting the Number of Detail Lines
per Page 296

Dating the Report and Numbering
the Pages 300
The Page Number 300
The Date 300
A New Module to Initialize Program
Variables 304

The Revised Program 305
Important Terms in Chapter 6 319
Exercises 319

Debugging Activities 321

Programming Exercises 326
Programming Exercise | 326
Programming Exercise Il 332
Programming Exercise Il 335
Programming Exercise IV 335

7 Conditional Statements
336

Objectives You Should Achieve 336
The Problem 337
A Brief Analysis of the Problem 337

Program Design Phase 338
Step 1 338
Step 2 339
System Flowchart 339
Structure Chart 339
Program Pseudocode 342

Design Implementation Phase 354
Steps 3 and 4 354
PROCEDURE DIVISION

Considerations 356

The Conditional Statement 356

The CONTINUE Statement 360

The Relational Test 360

Nonnumeric Relational
Operands 361

The Condition-Name Test 363

More Condition-Name Examples
364

The SET Statement for
Condition-Names 369

The Sign Test 370

The Class Test 371

Negated Test 373

Compound Tests 375

Abbreviated Compound
Relational Tests 378

Nested Conditional Statements
379

The EVALUATE Statement 383

Back to the Program 388
Coding the PROCEDURE
DIVISION 388
Steps 5 and 6 388

An Alternate Program
Development 396
Qualification 396
The MOVE CORRESPONDING
Option 398

The ADD CORRESPONDING
Option 399

The SUBTRACT
CORRESPONDING
Option 400

The Alternate Program 400
Important Terms in Chapter 7 405
Exercises 405

Debugging Activities 416

Programming Exercises 420
Programming Exercise | 420
Programming Exercise Il 427
Programming Exercise Il 430
Programming Exercise IV 431

8 Control Breaks and
Data Validation 434

Objectives You Should Achieve 434

Control Breaks 435

The Problem 435
Brief Analysis of the Problem 436
The Design Phase 438
Flagging Summary Levels 438
System Flowchart 439
Structure Chart 439

200 START UP 439

210 PROCESS SALES

RECORD 440

220 FINISH UP 440
Program Pseudocode 441
Program Flowchart 447

The Design Implementation
Phase 447
Subtotaling Versus Rolling
Forward 456
Forcing the Last Store Footing 457

Multiple Control Breaks 458
Structure Chart 460
Program Pseudocode and

Program Flowchart 460

The Revised Program 469

Data Validation 475
The Problem 475
Program Design Phase 476
Structure Chart 476
Program Pseudocode 478
Program Flowchart 482
Coding the Program 486

The INSPECT Statement 490
More on the INSPECT
Statement 499
More INSPECT Statement
Examples 501

Reference Modification 502

The REDEFINES Clause 503
Important Terms in Chapter 8 505
Exercises 505

Debugging Activities 509

Programming Exercises 517
Programming Exercise | 517
Programming Exercise Il 525
Programming Exercise |l 528
Programming Exercise IV 529

9 Table Handling Using
Subscripts 532

Objectives You Should Achieve 532

The Problem 533
A Brief Analysis of the
Problem 535
The Design Phase 536
System Flowchart 537
Structure Chart 538
Program Pseudocode 538
Processing a Payroll
Record 543
The Program Flowchart 552

Tables in COBOL 557
Defining a Table 557
Storing Values in a Table 559
Hard-Coding a Table—
Part | 559
Hard-Coding a Table—
Part Il 561
Loading a Table 561
Table Organizations 566
Accessing Data in a Table 568
Using Direct Referencing 568
Using Table Look-Up 568
Two-level Tables 573
Loading a Two-Level
Table—Scheme A 574
The PERFORM-VARYING-AFTER
Statement 576
Loading a Two-Level
Table—Scheme B 579
Searching a Two-Level Table
582
Accessing Data from a
Two-Level Table 583

The Federal Tax Table 584

Hard-Coding a Two-Level
Table 586

Some Technical
Considerations 586

The Design Implementation

Phase 587

Coding the ENVIRONMENT
DIVISION 587

Coding the FILE SECTION of the
DATA DIVISION 588

Coding the WORKING-STORAGE
SECTION 589

Coding the PROCEDURE
DIVISION 590

More to Come 599
SEARCH ALL 600

Contents vii

SEARCH Versus SEARCH
ALL 602

Important Terms in Chapter 9 603
Exercises 603
Debugging Activities 609

Programming Exercises 611
Programming Exercise | 611
Programming Exercise || 618
Programming Exercise Il 621
Programming Exercise IV 622

10 The SORT and MERGE
Statements 624

Objectives You Should Achieve 624

Problem 1—Sorting Only 625

Brief Analysis of the Problem 625

The Structure Chart for Problem 1
626

The Program Pseudocode for
Problem 1 626

The Program Flowchart for
Problem 1 626

The SORT Statement in
Problem 1 626

Coding the Program for
Problem 1 630

Problem 2—Sorting and Postsort

Processing 631

Brief Analysis of the Problem 632

The Structure Chart for Problem 2
633

The Program Pseudocode and
Program Flowchart for
Problem 2 633

The SORT Statement in
Problem 2 636

Coding the Program for
Problem 2 636

Running the Program for
Problem 2 640

Problem 3—Sorting and Presort

Processing 640

Brief Analysis of the Problem 640

The Structure Chart for
Problem 3 641

The Program Pseudocode and
Program Flowchart for
Problem 3 642

The SORT Statement in
Problem 3 642

Coding the Program for
Problem 3 644

Running the Program for
Problem 3 646

viii Contents

Problem 4—Sorting with Presort and
Postsort Processing 646
Brief Analysis of the Problem 646

Option 1 646
Option 2 648
The Program Pseudocode and
Program Flowchart for
Problem 4 648
The SORT Statement in
Problem 4 653
Coding the Program for
Problem 4 653
Running the Program for
Problem 4 657

Problem 5—Sorting with Multiple
Input Files and Postsort
Processing 657

Brief Analysis of the Problem 657
Coding the Program for
Problem 5 659

The SORT Statement Rules 669

The MERGE Statement 672

A Merge Problem 673

A Brief Analysis of the
Problem 673
The Merge Program 679

Internal Sort/Merge vs. External
Sort/Merge 685

Important Terms in Chapter 10 685

Exercises 685

Debugging Activities 688

Programming Exercises 692
Programming Exercise | 692
Programming Exercise |l 696
Programming Exercise Ill 698
Programming Exercise IV 698

11 File Handling 700
Obijectives You Should Achieve 700
Uses of Sequential Files 701
Creating Sequential Files 701
Some Tape File Characteristics 702
More Tape File Considerations 705

Problem 1 706
Brief Analysis of the Problem 706
The Program Pseudocode 707
FILE-CONTROL Entries 711
Back to the Program 713
Updating the Master Personnel Tape
File 718
Comments on the Flowchart 726
Comment 1 726

Comment 2 726
Comment 3 727
Comment 4 727
Comment 5 727

Backing Up the Master File 733
Disk Files 734
Some Disk File Characteristics 734

Creating a Sequential File on
Disk 737
Coding the Program 742

Updating Records in a Disk
Sequential File 751
Coding the Program 753
I-O Open Mode 753
REWRITE Statement 754

Updating a Disk Sequential File 758
Sequential Files in Brief 758

Indexed Files 758
Accessing Records of an Indexed
File 760
Accessing Records
Sequentially 760
Accessing Records
Randomly 760
Maintaining an Indexed File 761
More to Come on Indexed
Files 761
Relative Files 761
Creating a Relative File 761
Loading a Relative File 761
Randomization Procedure 765
Updating a Relative File 766
More to Come on Relative
Files 766
Important Terms in Chapter 11 766
Exercises 767
Debugging Activities 770
Programming Exercises 778
Programming Exercise | 778
Programming Exercise Il 780
Programming Exercise Ill 782
Programming Exercise IV 783
Appendix A: COBOL Reference
Formats 785
Appendix B: Collating
Sequences 802

Appendix C: Data Sets 805

Appendix D: ANSI COBOL 1985
Reserved Words 821

Glossary 823
Index 832

H Handy Reference to Rules for:

ACCEPT Statement 302

ADD CORRESPONDING Statement 399
ADD Statement 229

BLOCK CONTAINS Clause 704
Class Test 371

CLOSE Statement 168

Compound Tests 376

COMPUTE Statement 285
Condition-Names 364

Data Item Description Entry 126
Data Transfers 160

DISPLAY Statement 304

DIVIDE Statement 275

EVALUATE Statement 387

EXTEND Mode 742

IF-ELSE Statement 359

INITIALIZE Statement 164
INSPECT Statement 499

MOVE CORRESPONDING Statement 398
MULTIPLY Statement 225
OCCURS Clause 586

OPEN Statement 159

PERFORM Statement 156
PERFORM-UNTIL Statement 156
PERFORM-VARYING Statement 563
PERFORM-VARYING-AFTER Statement 576
Qualification 397

READ Statement 173

REDEFINES Clause 504

Reference Modification 503
Relational Test 363

RELEASE STATEMENT 646
RETURN Statement 639

REWRITE Statement 755

SEARCH ALL Statement 602
SEARCH Statement 600

SELECT Statement-Sequential Files 711
SIGN Clause 210

SORT Statement 669

Subscripts 587

SUBTRACT Statement 234

USAGE Clause 287

User-Defined Names 94

VALUE Clause 119

WRITE Statement 171

ix

Structured

COBO|L

H Introduction

In this introduction, we take a brief look at the historical development of the modern computer and the
COBOL programming language. We identify the major computer components and various languages that
programmers use in giving instructions to computers.

If you are now undertaking your first course in computer programming, or if you feel a need to review
the topics just listed, you are encouraged to spend an hour browsing through this introduction. m

B Historical Development of Computers

From time immemorial, people have had a need to gather and disseminate data. The caveman kept a record
of his kill by carving notches in his spear; wise men preserved scientific observations for posterity by
engraving in clay tablets; and the monks of old transcribed thousands of documents by hand. The
development of the printing press greatly increased the speed by which accounts could be disseminated; and
now, radio and television with the help of orbiting satellites make it possible to collect data and relay it
immediately to any point on the globe.

In our need to collect and transmit data, we are constantly searching for better tools that enable us to
accomplish our objectives. Historically, the collecting, processing, and dissemination of data have
progressed through three stages: manual, mechanical, and now electronic. The earliest simple manual tool
used for counting was the abacus, which is still in use today. In an effort to increase the capability of the
abacus, the French mathematician Blaise Pascal developed the first mechanical calculator in about 1642. A
few years later, the German mathematician Gottfried von Leibnitz also worked on a mechanical calculator
that performed all the basic operations of arithmetic. By the mid-1800s, Charles Babbage partially
constructed an automatic machine to perform calculations, but it was not until 1885 that William Burroughs
developed the first useful and practical automatic calculator. These mechanical calculators had to be
operated manually by a crank. They were improved and developed into electrical calculators.

By the mid to late 1930s, the threat of World War II provided additional impetus, and, very
importantly, funding for research in the planning and development of electronic machines. Dr. Howard

B An abacus

B Pascal’'s mechanical calculator

Introduction

M Burroughs automatic calculator

B An IBM personal system/2

)

Satellite

Computer
e Sy analysis
Dish
antenna

Introduction

Aiken of Harvard University developed the Mark I in 1944. Dr. John Atanasoff of Iowa State University,
with the help of his graduate student Clifford Berry, developed the ABC computer. But it was not until 1946
that the first electronic calculator, known as ENIAC, was produced by J. P. Echert and J. W. Mauchly at the
University of Pennsylvania. (It became known much later that the key ideas developed by Mauchly had
been obtained from Atanasoff.) From this time on, the development of computers has been so rapid and
fantastic that it boggles the mind. John von Neumann developed the concept of stored programs; that is,
how to keep programs (sets of instructions to the computer) in the computer’s memory. Echert and Mauchly
produced the first commercial computer, UNIVAC I, in 1950. (The head programmer of the UNIVAC was
Dr. Grace Hopper, who later made very important contributions to the development of the COBOL
language.)

As the technology improved, hundreds of vacuum tubes were replaced by tiny transistors, miles of
wiring were replaced by printed circuits, and room-size computers were replaced by hand-held calculators.
Today, the state of the art is still changing and leaping forward.

Bl Historical Development of COBOL

The rapid technological advances of the 1950s made it necessary to increase the efficiency of programming
languages. When computers were first brought on the market, all programming was written in machine
language. This language is heavily dependent on the electronic makeup of a particular computer; hence,
programs had to be written for specific computers. Programs prepared for one computer could not be used
on another without substantial rewriting at substantial additional expense. Institutions could not share
programs unless they had identical computers. If an industry updated its computer hardware, its
applications programs had to be rewritten. Such a state of affairs was obviously unacceptable.

In 1959, a number of computer professionals representing the interests of the U.S. government, the
world of finance, universities, the insurance industry, and a variety of commercial industries and computer
manufacturers agreed to meet for the express purpose of developing a business-oriented programming
language that would be machine-independent. This group was called the Conference on Data Systems
Languages (CODASYL). Its efforts culminated in the publication in the latter part of 1960 of the first
version of COBOL. The word COBOL is an acronym for COmmon Business-Oriented Language. Some of
the important features CODASYL wanted to incorporate in this language were the following:

1. It was to be machine-independent, thus allowing the same program to be processed on more than
one computer. This objective was achieved to a remarkable degree, as you will learn in subsequent
chapters.

2. It was to be easily maintainable. It was to allow for expansion, and for the inclusion of additional
features to take advantage of technological improvements anticipated in later-generation
computers. The subsequent versions COBOL-61, COBOL-61 extended (1963), COBOL Edition 65
(1965), COBOL Edition 1974, and COBOL Edition 1985 attest to the success of this feature.

3. It was to be free of mathematical and scientific symbols. In fact, the syntax, as developed, looks
very much like the English language. It has a sentence structure and uses verbs, names, phrases,
and clauses. This structure, along with a great versatility in the selection of names, allows
programs to be largely self-documenting.

Though CODASYL still assumes the responsibility to update and maintain the COBOL language, the
American National Standards Institute (ANSI) entered the picture in 1968, when it established COBOL as
a standard language. The versions of COBOL as specified by ANSI are referred to as ANS COBOL. Most
computer manufacturers provide COBOL compilers for their computers that comply with the specifications
established by ANSI, but they also include extended features that capitalize on the unique features of their
hardware configurations.

In programming establishments throughout the country, the 1974 version of COBOL is gradually
being replaced by the 1985 version. This text generally adheres to the newest version.

H Computers

Today, there are computer systems of all sizes and capabilities. Microprocessors are used in cars to increase
efficiency, minimize fuel consumption, display road maps, and control passenger area climate (see Figure i.1).
Other microprocessors are used in home heating systems, controlling the amount of heat to be produced in
relation to ambient outdoor temperatures according to a programmed time schedule.

Introduction

