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H Preface

This text is written for the student who wants to develop effective problem-solving techniques while learning
structured COBOL programming. It contains a number of features that make it stand out from other available
texts.

Bl Problem-Solving Procedure

A time-tested problem-solving procedure is presented and explained in the very first chapter, and then the
“Turbo Manufacturing Company Employee Listing” program is used immediately to show the procedure in
actual use. Every original program presented in the text is also systematically developed following the steps
specified in the procedure.

Many textbooks do suggest a systematic approach to programming, but more often than not, the
systematic approach is not used later in the text to develop sample programs, no further reference is made
to it, and if students use it at all, it is on their own initiative. Since developing an effective approach to
problem solving is so crucial to a novice programmer, repeated exposure to a specific method that is used
in a consistent manner will go a long way toward achieving that goal. The net result is that the student retains
the procedure as a productive “working” tool in later programming situations.

H Problem-Oriented Approach

The text follows a problem-oriented approach. This approach allows the development of COBOL statements
and features to be presented on a “need to know” basis, where they are applied immediately in the situation
being discussed. The sample problems that have been selected as vehicles for the introduction of COBOL
language features are presented at the very beginning of the chapter, thus setting the stage for what is to
come in the rest of the chapter.

In Chapter 2, the program “Allied Stock Company Phone Sales Report” is presented and developed
primarily to expose the students to the major functions of the four divisions of a COBOL program.

In Chapter 3, the same program is used as a vehicle to expand upon the features of the
IDENTIFICATION DIVISION, the ENVIRONMENT DIVISION, and the DATA DIVISION. In Chapter 4, it is used
to elaborate upon the features of the PROCEDURE DIVISION.

In Chapter 5, a new program, “Reliable Auto Parts Company Payroll Report,” is presented and
developed as a tool to introduce arithmetic statements, since the preparation of a payroll requires a number
of arithmetic operations.

In Chapter 6, the program of Chapter 5 is expanded to prepare a summary payroll report that contains
totals and averages for the company. The same program is then revised to include refinements in both the
program and the printed report.

In Chapter 7, the program “Jocelyn Originals Company Annual District Sales Report” prepares a
summary report by district. Because the records of the input file are in alphabetical order, the district code
must be tested so that the sales figures can be added to the appropriate district accumulators. This leads
into a discussion of conditional statements—simple, compound, and nested. Once the report has been
produced, an alternative approach is developed to illustrate the use of CORRESPONDING statements and
qualification of data names. Since the setting of the problem remains the same, students can more easily
concentrate their attention on the new features.

In Chapter 8, two programs are presented to illustrate important applications of conditional state-
ments. The “Sportsman Company Sales Analysis Report” program serves as an introduction to control



breaks. One-level control breaks are examined first, and the program is then expanded to illustrate two-level
control breaks. The “Sportsman Company Data Validation Report” program is then developed to examine
various data validation procedures.

In Chapter 9, the “Monster Burger Stores Weekly Payroll Report” program has been designed to
require the use of input-loaded and hard-coded tables. Its development leads into discussions of table
organizations, levels in a table, table-loading procedures, and table-data retrieval procedures.

In Chapter 10, variations of the “Sportsman Company Sales Report” program are used to illustrate all
the possible combinations of options of the SORT statement. PROCEDURE DIVISION sections are
introduced in relation to the SORT statement. A final program is used to illustrate the MERGE statement.

In Chapter 11, the Jocelyn Originals Company provides a setting for the development of programs that
create master files on tape or on disks. These files have sequential organization. Indexed files and relative
files are also introduced, but complete programs are not included since the sequel to this book examines
these two file organizations in detail.

Structured Programming Tools

Built into the design phase of the problem-solving procedure is the use of tools that result in structured
programs. The system flowchart specifies the overall task of the program, in addition to identifying the
required files. The structure chart begins with the overall task as its primary module, and then breaks it down
into major subtasks, one per module. These major subtasks are further subdivided as needed, until the
question “What has to be done?” is completely answered. The program pseudocode or the program
flowchart then details the procedures that answer the question “How is the task to be done?”

In the structure chart, the first-level, or primary, module is numbered 100, the second-level modules
are numbered consecutively from left to right in the 200s using increments of 10, the third-level modules are
similarly numbered in the 300s, and so on for the remaining levels. If a particular module is needed at
different levels in the structure chart, every occurrence of the module is assigned the number of the lowest
level where it is needed, and the upper right-hand corner is darkened to clearly indicate its repetitive nature.

The paragraphs of the pseudocode and the modules in the flowchart retain the numeric prefixes and
names first assigned in the structure chart. The paragraph names in the PROCEDURE DIVISION are then the
same as those of the pseudocode or flowchart. Furthermore, by coding the paragraphs in ascending order
of their numeric prefixes, program debugging is greatly facilitated, since the programmer can quickly scan
margin A to locate a particular paragraph.

COBOL ’85 Standards

The text implements the standards of COBOL '85. A student who learns the language as presented in this
text will be well-prepared to write programs that include up-to-date syntax and structure. However, since
most of COBOL '74 is still supported in the COBOL 85 standards, and since the new features are identified
as such within the text, this text remains appropriate for use by students who are currently using a COBOL
'74 compiler, and these students will have a handy reference when they first encounter a COBOL '85
compiler. Naturally, the new features cannot be incorporated in programs to be compiled by a '74 compiler,
and features that are currently labeled as obsolete may be required entries. (Obsolete entries are not used
in the sample programs of this text.)

Debugging Activities

Debugging exercises have been included at the end of every chapter. They are listed following the more
traditional “review and practice” exercises and before the programming exercises. They include debugging
data entry errors, misaligned entries on a printed report, data description errors that do not conform to
prepared layouts, compiler-generated syntax errors, coding errors that do not represent the logic specified
in either pseudocode or flowchart form, numeric and/or numeric-edited data description coding errors,
errors in mathematical statements or expressions, errors related to missing data or incorrect values on a
printed report, printed report errors related to incorrect handling of control breaks, coding errors related to
table definitions, table loading, and data retrieval, sorting errors due to improperly sequenced keys, and
control errors related to the use of sections within the PROCEDURE DIVISION.

These exercises are designed to draw attention to common errors and some less common ones.
Students who successfully complete these exercises should be able to avoid making the same types of
errors in their own programs.
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H Programming Assignments

There are four programming assignments at the end of each chapter, beginning with Chapter 3. In the spirit
of “leading the student by the hand,” the student is presented with the completed design phase of the
problem-solving procedure in the first assignment; that is, the input record layout form and the printer
spacing chart are prepared, and the system flowchart, the structure chart, and the program pseudocode and
flowchart are completely developed. After studying these aids, the student can quickly move to the completion
of the task—coding the program, debugging it as needed, and running it with a sample data file.

In the second assignment, the design phase of the problem-solving procedure is completed for the
student except for the program pseudocode and the program flowchart. The student’s task is to complete the
design phase, and then implement the design.

The third and fourth assignments are full-scale assignments. The student must design the program
“from scratch,” and then carry out the implementation of the design.

Data sets for all programming assignments are provided in Appendix C, and are also available on
magnetic disks for the convenience of instructors and students.

H Program Documentation

All sample programs contain a number of documentation paragraphs in the IDENTIFICATION DIVISION.
The student is aided in verbalizing the nature of the task that the program must accomplish by being
expected to properly document the listing of the program. The better the task is defined, the easier it is to
map out an appropriate strategy. Few textbooks provide this type of documentation or encourage students
to do so.

H Listing of Rules

Whenever COBOL language elements and statements are introduced, explained, and illustrated in a section
of a chapter, all of the applicable rules are collected and summarized within that same section under a title
beginning with “Rules Governing Use of....” Students will find these sections convenient because
everything they need to know about the feature or statement is there, assembled in one place. A list of these
rules sections, complete with page references, is printed at the front of the book on page ix. The colored
tabs that are visible on page edges mark the locations of these rules in the text.

H Course Organization

There is ample material in this text for a quarter or a semester's work in a course that might be entitled
“Structured COBOL Programming |.” It is not intended as a complete treatment of the COBOL language, but
rather as an effective teaching/learning tool for the developing programmer. The sequel to this text,
Advanced Structured COBOL, takes the student into more advanced table handling, file organizations,
master file updating procedures, subprograms and nested programs, and also introduces on-line interactive
COBOL programs, even though a screen-handling facility is not yet included in ANSI COBOL Standards. A
Report Writer supplement is also available upon request.

B Ancillaries

The following ancillary materials have been prepared for the convenience of instructors using this text:

a. An Instructor’'s Manual that contains, for each chapter, an overview of the chapter, a discussion of
the particularly significant topics of the chapter, some suggested coordinated activities for the
student, answers to all the chapter exercises, solutions to all the debugging activities, and a
complete set of solutions for all the programming exercises.

b. A complete set of transparency masters.

c. TestPak, a computerized testing program that an instructor can use in constructing class tests
quickly and efficiently. TestPak is a computerized system that enables you to make up customized
exams quickly and easily. For each exam, you can select up to 250 questions from the file and either
print the test yourself or have Business and Educational Technologies print it.

d. A Data Disk that contains the data files used in the chapter sample programs and in the debugging
activities programs, and data files that can be used as test data for all the programming exercises.
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e. Source code disks that contain:

i. The source code for all the chapter sample programs.
ii. The source code for the programs used in the debugging activities at the end of each chapter.
The source code for the completely debugged programs are also included.
iii. The source code for the programs that must be developed in the programming exercises at the
end of each chapter.

These source code disks allow instructors to make changes to existing programs, thereby
customizing the programs to their own needs without a major effort on their part.

B Software

Structured COBOL can be purchased with the following excellent software packages:
a. The RM/COBOL-85 Educational Version Compiler, which offers complete language functionality,

screen handling capabilities, and an application development environment. A Convenience Disk is
included in the textbook for students who also purchase the RM/COBOL-85 Compiler for use on their
personal computer. This disk contains the source code for the programs in the debugging exercises
at the end of each chapter. It also contains all the data sets used in the chapter sample programs
and the data sets needed for the programming exercises at the end of each chapter.

Micro Focus Personal COBOL, a full-featured, PC-based package that allows students to write,
compile, debug, and test complete COBOL programs.

B A Final Note

| wish to thank the staff of the Computer Center at the University of Massachusetts—Lowell for their
cooperation whenever their technical assistance was needed.

| also wish to thank the members of my family for their patient understanding during the long

development process, and in particular, my wife, Vivian, for her constant encouragement and support.

B Notes on My Computer

1.
2.

3.

Computer name: Operating system:

Nonnumeric literals must be enclosed in
(quotation marks or apostrophes).

Implementor-names to be used in the ASSIGN clause are:

ANSI COBOL compiler: (1985 or 1974)
Procedures to log on to my system:

System commands to edit a file:

. Commands to “run” a program:
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H Introduction

In this introduction, we take a brief look at the historical development of the modern computer and the
COBOL programming language. We identify the major computer components and various languages that
programmers use in giving instructions to computers.

If you are now undertaking your first course in computer programming, or if you feel a need to review
the topics just listed, you are encouraged to spend an hour browsing through this introduction. m



B Historical Development of Computers

From time immemorial, people have had a need to gather and disseminate data. The caveman kept a record
of his kill by carving notches in his spear; wise men preserved scientific observations for posterity by
engraving in clay tablets; and the monks of old transcribed thousands of documents by hand. The
development of the printing press greatly increased the speed by which accounts could be disseminated; and
now, radio and television with the help of orbiting satellites make it possible to collect data and relay it
immediately to any point on the globe.

In our need to collect and transmit data, we are constantly searching for better tools that enable us to
accomplish our objectives. Historically, the collecting, processing, and dissemination of data have
progressed through three stages: manual, mechanical, and now electronic. The earliest simple manual tool
used for counting was the abacus, which is still in use today. In an effort to increase the capability of the
abacus, the French mathematician Blaise Pascal developed the first mechanical calculator in about 1642. A
few years later, the German mathematician Gottfried von Leibnitz also worked on a mechanical calculator
that performed all the basic operations of arithmetic. By the mid-1800s, Charles Babbage partially
constructed an automatic machine to perform calculations, but it was not until 1885 that William Burroughs
developed the first useful and practical automatic calculator. These mechanical calculators had to be
operated manually by a crank. They were improved and developed into electrical calculators.

By the mid to late 1930s, the threat of World War II provided additional impetus, and, very
importantly, funding for research in the planning and development of electronic machines. Dr. Howard
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Aiken of Harvard University developed the Mark I in 1944. Dr. John Atanasoff of Iowa State University,
with the help of his graduate student Clifford Berry, developed the ABC computer. But it was not until 1946
that the first electronic calculator, known as ENIAC, was produced by J. P. Echert and J. W. Mauchly at the
University of Pennsylvania. (It became known much later that the key ideas developed by Mauchly had
been obtained from Atanasoff.) From this time on, the development of computers has been so rapid and
fantastic that it boggles the mind. John von Neumann developed the concept of stored programs; that is,
how to keep programs (sets of instructions to the computer) in the computer’s memory. Echert and Mauchly
produced the first commercial computer, UNIVAC I, in 1950. (The head programmer of the UNIVAC was
Dr. Grace Hopper, who later made very important contributions to the development of the COBOL
language.)

As the technology improved, hundreds of vacuum tubes were replaced by tiny transistors, miles of
wiring were replaced by printed circuits, and room-size computers were replaced by hand-held calculators.
Today, the state of the art is still changing and leaping forward.

Bl Historical Development of COBOL

The rapid technological advances of the 1950s made it necessary to increase the efficiency of programming
languages. When computers were first brought on the market, all programming was written in machine
language. This language is heavily dependent on the electronic makeup of a particular computer; hence,
programs had to be written for specific computers. Programs prepared for one computer could not be used
on another without substantial rewriting at substantial additional expense. Institutions could not share
programs unless they had identical computers. If an industry updated its computer hardware, its
applications programs had to be rewritten. Such a state of affairs was obviously unacceptable.

In 1959, a number of computer professionals representing the interests of the U.S. government, the
world of finance, universities, the insurance industry, and a variety of commercial industries and computer
manufacturers agreed to meet for the express purpose of developing a business-oriented programming
language that would be machine-independent. This group was called the Conference on Data Systems
Languages (CODASYL). Its efforts culminated in the publication in the latter part of 1960 of the first
version of COBOL. The word COBOL is an acronym for COmmon Business-Oriented Language. Some of
the important features CODASYL wanted to incorporate in this language were the following:

1. It was to be machine-independent, thus allowing the same program to be processed on more than
one computer. This objective was achieved to a remarkable degree, as you will learn in subsequent
chapters.

2. It was to be easily maintainable. It was to allow for expansion, and for the inclusion of additional
features to take advantage of technological improvements anticipated in later-generation
computers. The subsequent versions COBOL-61, COBOL-61 extended (1963), COBOL Edition 65
(1965), COBOL Edition 1974, and COBOL Edition 1985 attest to the success of this feature.

3. It was to be free of mathematical and scientific symbols. In fact, the syntax, as developed, looks
very much like the English language. It has a sentence structure and uses verbs, names, phrases,
and clauses. This structure, along with a great versatility in the selection of names, allows
programs to be largely self-documenting.

Though CODASYL still assumes the responsibility to update and maintain the COBOL language, the
American National Standards Institute (ANSI) entered the picture in 1968, when it established COBOL as
a standard language. The versions of COBOL as specified by ANSI are referred to as ANS COBOL. Most
computer manufacturers provide COBOL compilers for their computers that comply with the specifications
established by ANSI, but they also include extended features that capitalize on the unique features of their
hardware configurations.

In programming establishments throughout the country, the 1974 version of COBOL is gradually
being replaced by the 1985 version. This text generally adheres to the newest version.

H Computers

Today, there are computer systems of all sizes and capabilities. Microprocessors are used in cars to increase
efficiency, minimize fuel consumption, display road maps, and control passenger area climate (see Figure i.1).
Other microprocessors are used in home heating systems, controlling the amount of heat to be produced in
relation to ambient outdoor temperatures according to a programmed time schedule.
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