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FOREWORD

These notes represent the writer's attempt to organize and compre-
hend the mathematics communicated to him by Harish-Chandra, both in
public lectures and private conversations, during the years 1971-1973. They
offer the reader an ab initio introduction to the theory of harmonic analysis
on reductive p-adic groups. Besides laying the foundations for a theory of
induced representations by presenting Jacquet's theory, the Bruhat theory,
the theory of the constant term, and the Maass-Selberg relations, these
notes develop the theory of the Schwartz space on a p-adic group and the
theory of the Eisenstein integral in complete detail. They also give the con-
struction of the algebras of wave packets as orthogonal components of Schwartz
space and prove Plancherel's formula for induced series, Harish-Chandra's
commuting algebra theorem, and the sufficiency of the tempered spectrum
for rank one groups. Most notable among omissions from these notes is
Harish-Chandra's completeness theorem (i.e., that for arbitrary rank, the
tempered spectrum suffices) announced in [7f] and his theory of the characters
of admissible representations.

The reader will find a summary of a part of the contents of this
work given in Harish-Chandra's Williams College lectures ([7e]).
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Chapter 0. On the Structure of Reductive p-adic Groups.

The theory to be developed in the five later chapters of these notes
depends upon the structure theory for reductive groups with points in a p-adic
field, Fortunately, this theory has been worked out in detail (cf., [2a],[2¢c] for
the essentially algebraic aspects and [4c] for the directly related topological
part). In this chapter we very briefly review only those facts from the structure
theory which we shall need later. The reader may consult the references both
for proofs and more details.

If G is any group and H a subgroup, we write ZG(H)[NG(H)] for

-1
o gxg

the centralizer [normalizer] of H in G. Given x,ge¢ G, we write x
-1
and Hg = gHg .
We write [X] for the cardinality of a finite set X.

; : X .
For any ring R we write R for its group of units, If n is a

positive integer and R is a commutative ring, we write GL_(R) for the group
n

of all n X n matrices (c..), . . with entries c¢.. ¢ R and determinant in
ij lil, J<_n 1]
X R
R°. We write det(x) or det(cij) to denote the determinant of a matrix x or
(c..).

1]
We write Z for the ring of ¢rdinary (rational) integers, @, IR, and

C for the fields, respectively, of rational, real, and complex numbers,



§0.1. Some Definitions and Facts.

Let Q be a field and § an algebraic closure of §2. For any positive
integer m the space Q™ of all m-vectors with components in Q carries the

Zariski and  topologies: A subset S of S_lm is called Zariski closed [Q2-closed]

if S is the zero set of some finite set of polynomials in ﬁ[xl, o i ,xm][ﬂ[xl, i ,xm]].

The complement of a Zariski closed [2-closed] subset of Q™ is termed Zariski
open [Q2-open]. Obviously, the Zariski topology on Q™ is finer than the Q-

topology. A subset 5 of a Zariski closed [Q2-closed] set S Q™ is called

2

Zariski dense [2-dense] in S, if every Zariski closed [Q2-closed] subset of Q™

2
which contains S1 also contains SZ'
Under an obvious identification, we may, for any positive integer n,

2
regard GLn(ﬁ) as the Q-open subset det(xij) #0 of o or, more conveniently

2
—=n +1 . 2
for what follows, the Q-closed subset y det(xij) =1 of Q . A linear algebraic
group or l.a.g. is a subgroup GC_ GLn(Q) which is Zariski closed as a subset

_ -1
of QO +1' If G isan l.a.g., the grouplaw (x,y)~x y for G is givenbya

2 2 2

polynomial mapping Q" xa" »Qn . An l.a.g. G is said to be defined over
Q or called an Q-group if G is -closed in §n2+1 and if the group law is given
by polynomials with coefficients in .

We will denote linear algebraic groups by Roman letters with wavy
underlines. If G isan l.a.g. and R is a subring of 5, we write G(R) for
GM GLn(R). If G is an Q-group, we sometimes write G = G(Q).

A morphism of l.a.g.'s is a group homomorphism which is at the
same time a polynomial mapping. An Q-morphism is a morphism of Q-groups

in which the polynomials defining the mapping have coefficients in Q.



An 1l.a,g. is called connected if it contains no l.a.g. as a subgroup
of finite index. An l.a.g. G contains a maximal connected subgroup, denoted
0 . . 0
G . If G is an Q-group, then so is 9 .

Given an l.a.g. G, we write X(G) for the group of all rational

characters of G, i.e., the group of all morphisms of G to g&.l = GLI(S—Z) = STZX

If G is connected, X(G) is a free abelian group. If G is an Q -group, we write
X(G) for the subgroup of X(G) which consists of all @ -morphisms. Under these
conditions, if x ¢ X(G), we frequently abuse language to regard x as a homo-

X
morphism yx : G—-Q .

The radical Re [unipotent radical 'NG] of an l.a.g. G is the

maximal connected normal solvable [unipotent] subgroup of G. If N_ = (1), we

G

call G a reductive group. If (1), we call G a semisimple group. The

‘w.G =
derived group 39 of a reductiv: group is semisimple; in fact, the radical of a
reductive group is central and Bgm (center of G) is finite.

A commutative, connected, and reductive l.a.g. is called a torus.
The dimension of a torus is the rank of X(T). A torus which is an Q-group is
called an -torus. The radical of a reductive Q-group is the maximal Q -torus
lying in its center. If T is an Q-torus and T is isomorphic to the diagonal
subgroup Dn(Q)C GLn(Q) for some n, thenwe call T an Q-split torus; this
is the case if and only if X(T) = X(T). If T isan Q -torus, then there is a finite

separable extension @' of  with respect to which T is an Q'-split torus.

A reductive Q-group is called anisotropic (over §) if it contains no

Q -split torus.



§0.2. Cartan Subgroups and Split Tori in Reductive Groups.

ductive Q-group.

A Cartan subgroup of E is a maximal torus of G. All Cartan sub-
groups of G are conjugate, hence have the same dimension. There exist Cartan
Q-subgroups of G. The group G = G(2) operates by conjugation on the set of
Cartan Q-subgroups of G. If char =0, the number of orbits is finite--other-
wise, it may be infinite.

The group G operates transitively by conjugation on the set of maxi-
mal Q-split tori of G. Let Z denote the maximal Q2 -split torus lying in the cen-
ter of G. The dimension of a maximal Q-split torus of the group 9/5 is called

the reduced, semisimple, or split rank of G.

For any Q-group X a rnaximal Q-split torus lying in the radical of

X is called a split component of X,

If T is an Q-torus of G, then ZG( ) is a connected and reductive

§?-subgroup of G. Thus, T is a split component of ZG(T) if and only if T is
the maximal § -split torus lying in the center of T.

If T is a Cartan Q-subgroup of G, then ZG(I‘)/F is obviously aniso-

tropic. In particular, if I'/Z is anisotropic, then ZG(F) =T,



§0.3. Parabolic Subgroups of Reductive Groups.

A Borel subgroup B of G is a maximal connected solvable subgroup
of G; equivalently, G/B is a projective variety and B is minimal with this

property. All Borel subgroups of G are conjugate. A parabolic subgroup of G

is a subgroup which contains a Borel subgroup. Every parabolic subgroup of G
is a connected 1,.a.g.
Let P be a parabolic 2-subgroup (or p-subgroup) of G. The unipotent

radical N =N_ of P is alsoan Q-subgroup of P. A connected and reductive

P

Q-subgroup M of P is called a Levi subgroup or Levi factor of P if P=M- N,

an Q) -semidirect product of @ -groups--this means, in particular, that P is Q-
isomorphic to M XN as 2-varieties. A subgroup M of G is a Levi subgroup

of P if and only if M = ZG(A) for some split component A of P. The group

~

N acts transitively and freely on the set of split components of P, consequently,
also on the set of Levi subgroups of P. The choice of a split component A or

Levi subgroup M = ZG(é) determines a Levi decomposition P = MN for P.

Let (E,é) be a parabolic pair or p-pair of G, i.e., a pair consisting

of a parabolic Q-subgroup P of G and a split component A of P. The codimen-
sion of Z, the split component of G, in A is called the parabolic rank or

p-rank of P or (P,A).

An Q-split torus A of G is called a special torus of G if A isa

.

split component of some p-subgroup of G. We note that A 1is a special torus if

and only if A 1is the split component of = ZG(A). A special subtorus of a

TS

maximal 2 -split torus éO of G is called an Ao—standard torus of G.



Given two p-pairs (g,é) and (E' ,é') of 9, we write (f'é)> (E‘ ,é')

if P OP' and A' DA, A p-pair Py Ay of G is called a minimal p-pair of
G if PO is a minimal parabolic Q-subgroup of G; in this case, »éO is necessarily

a maximal Q-split torus of G. The pair (G,Z) is a p-pair; however, by con-
vention we refer to a maximal proper p-pair, i.e., a p-pair of p-rank one, as a
maximal p-pair,

Fix a minimal p-pair (fo’éo) of G. A p-pair (»1?,:1}) is called
standard (with respect to (Eo,éo)) if (P,4) > (fo,éo), semistandard (with respect
to éo) if éC éO' The set of semistandard p-pairs is finite and will be described
in detail in §0.5. For any p-pair (P,A) there is one and only one standard p-pair
@l’él) such that E’ is conjugate to fl; in fact, there exists x e¢ G such that
(Px A) = (E,ﬁ\). In particular, any two minimal p-pairs are conjugate in this
strong sense.

Let i\ be a special torus of Er Write ‘@(ﬁ\) for the set of parabolic
Q -subgroups of 9 with f} as split component., The finitely many elements of
‘G)(A) are called associated (or A-associated) p-subgroups. §0.5 will also charac-
terize 63(1_&:), when A is standard.

Let P and P, be parabolic -subgroups of G. We say that P, and

1 2 1

'EZ are opposite parabolic subgroups of G if Plf“l Pz is a Levi factor of both,

For any P ‘P(‘é) there is exactly one opposite parabolic subgroup Pe Pw).

In this case, we also say that (P,A) and (?,é) are opposite p-pairs.

Let (P,A) (P = MN) be a standard p-pair of G. There is a one-
one correspondence between [semi-standard] (standard) p-pairs (P',A')

(P' = M'N') of G such that (P,A)> (P',A') and [semi-standard] (standard)

p-pairs of M. This correspondence is defined as follows. Given (P',A') as



* *
above, set ( P,A') = (E' M M, é' ). Then ( E,é') is a p-pair of M with the

Levi decomposition ilj’ = MN-= M- MM N'. For this correspondence,

(Py,A) (Po=M + N =M

. i is the ' G v o
Py 8o Po =M, Ny yoﬂ M) is the "standard' minimal p-pair

of M.

§0.4. On the Rational Points of p-adic Reductive Groups.

A p-adic field is a topological field which, as a topological space,
is a nondiscrete totally disconnected space in the sense of §1.1. Concretely, any
p-adic field is a completion with respect to a discrete valuation of either a function
field in one variable over a finite field of constants or of a number field. From

here on, let Q denote a p-adic field. We normalize the absolute value function

on § such that, if O is any nonempty compact open subset of , u is a Haar
X
measure on , and ae Q , then u(@Q) = ]a|/.z(O). In this case, if a is a prime
element of @ (i.e., if |a| <1 and |a| generates the group of values), then
-1
|a] =q , where q is the module of .
m

The space of m-vectors 2 has the product p-adic topology. It is
easy to see that the intersection with of any Q-closed subset of § is closed
in the p-adic topology. In particular, the group of Q-points of any Q-group is a

t.d. group (§1.2).

¥ X isa Q2 -subgroup of G, then we call X a sub-
group of G. The blank can contain any of the terms defined in the preceding two

sections. If T is an Q-split torus of G, we call T a split torus of G. If

(P, A) is a p-pair of G with P = MN its associated Levi decomposition we call



(P,A) a p-pair of G and P = MN its Levi decomposition,

All the groups X considered in the previous two sections have the
property that X is Zariski dense in X,

If G is anisotropic, then G is compact.

Given X ¢ X(G) and x¢ G, we set <x,H,(x)> = 1ogq[x(x) .

This defines a continuous homomorphism HG : G~ Hom(X(G), Z). Set

°G = M ker|x | = ker H Then °G is an open normal subgroup of G

X € X(G) ¢
which contains every compact subgroup of G. Indeed, the factor group G/OG

is a free abelian group.

Lemma 0.4.1. Let G be a connected and reductive 2-group and let Z be the
maximal §-split torus in the center of G. There is a natural injection

r :X(G)< X(Z). The factor group X(Z)/X(G) is finite.

Proof. The natural map r* is restriction. We have only to show that r* maps
X(G) injectively to a subgroup of the same rank as X(Z). Note first that the
semisimple subgroup ﬁg is a connected normal -subgroup of 9, Set

z' :Z/ngg and G' :9/39 Then dimZ' = dim% and E‘ is a maximal
Q-split torus in G'. Since X(G) = X(G') = X(2'), which is a subgroup of finite

index in X(Z), the lemma is true.
Corollary 0.4.2, The subgroup °G + Z is of finite index in G.

Proof. Observe that G/OG DOGZ/OG and both groups are isomorphic to lattices

of the same rank,

Remark, Let G, = Gmﬁg If charQ =0, then [G: G

1 - Z]< «; however, if

1



char > 0, this is not always true. Note that °G is not necessarily the group of
Q-rational points of an l.a.g. (e.g., OQX = {xe QXI |x| =1}). However, G/GIZ

is compact and abelian.

§0.5. Lie Algebras, Roots, and Weyl Groups.

Let A be a special torus of G and let M = ZG(A). Then M is a
Levi subgroup of P for all P« G)(A). We define the Weyl group of A (relative

to G)as W(G/A) = W(A) = Ng(é)/Zg(é) = NG(A)/ZG(A). We note that ZG(é) =

NG(ﬁx)o = M, which implies that W(A) is a finite group. More generally, if Al

and A2 are special tori, we write W(A2 |Al) for the set of homomorphisms

s : A1 - A2 which are induced by inner automorphisms of G.

There is a natural action of W(A) on A and, dually, on X(A). Given

s -1
a e:fx and s € W(A), set s-a=a = ay =yay , where y =y(s) ¢ NG(A) represents s;

for x ¢ X(A) define Xs such that xs(s-a) = x(@) (ace :/}),

Define the real L_ie_algebra of A as 0T = Hom(X(A), Z) ®Z IR and its
dual ot - X(A) @Z IR, also the complexifications ICC =0R C and JLZ:: ﬂ,* ® C.
Notice that, canonically, € = Hom(X(M), Z) ® IR and lﬁr* = X(M) ® R. The mapping
HM of §0. 4 imbeds M/OM as a lattice in JC; each element x ¢ X(A) corresponds
to a unique element of 00*, called the associated weight. We usually denote rational
characters and the canonically associated weights by the same Greek letter, depending
upon the context to indicate the intended meaning. The pairing <, > of §0.4

S 5k
extends to a pairing of 4T X46L to IR, of ﬂ—;: X ﬂc to €. The group W(A)

operates on both JC and o,
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Next we let the action of G on G by inner automorphisms induce the
adjoint representation Ad : G - Aut(d}), where d} is the Lie algebra of G and

Aut(Q‘T«) is its automorphism group. The group Aut(%) is an -group and Ad is

an 2 -morphism. We write Ad_  for the restriction of Ad to A. Since A is

Q -split, AdA is diagonalizable (over ). We call a nontrivial rational character

of A which occurs in AdA a root character. The weights of the root characters

are called the roots or A-roots with respect to G. An A-root is called reduced if

ta an A-root with te @ implies te Z. We write Z(G,A) or Z(G,A)
[Zr(G,é‘) or Er(G,A)] for the set of A-roots [reduced A-roots| with respect to

G. We have the direct sum decomposition ? =MD ?a (@ € (G, A)), where

is the Lie algebra of M and 70( the eigenspace in ? associated to the root

character a ¢ X(A).

To each pair + ae Er (G, A) there corresponds an orthogonal hyperplane
Ha ={a ¢dt Ka,a> = 0}). The connected components of the space 4C-\_UH =0T’
o
(@ € (G, A)) are called chambers. Choosing a chamber E C 0L, we obtain a set

ZK ={a e Z(G, A) ’<a,r> > 0}. There is also a unique set Zi CZ‘: of simple roots

such that the elements of 2‘;: are linearly independent and every element of =

K

K
Then 7\ is the Lie algebra of the unipotent radical N of a parabolic subgroup

is a positive integer combination of elements of ZO, Let N =& ? (a € EL_).

P=MN of G. We also write (P, A) = =_ , =P, A) = zg and X (P,A) =
s

zr(G,A)ﬁ z): . Observe that -2’: =5 and that (G, A)==_UZX The

-K K K’
chamber -J corresponds to the opposite parabolic subgroup P = MN ¢ P (A).

We have the following one-one correspondences:

Pa) = (£| & Cott  {z_|z_ C=(G, A}~ {z3).



