David H. Young [ ¥

The Visual Tel Handbook

4




The Visual Tcl
Handbook

David H. Young

Prentice Hall PTR

Upper Saddle River, New Jersey 07458
http://www.prenhall.com



Library of Congress Cataloging-in-Publication Data

Young, David (David H.), 1952-

The Visual Tcl Handbook / David Young.

p. cm.

Includes index.

ISBN 0-13-461674-X (paper)

1.Graphical user interfaces (Computer systems) 2. Visual Tcl (Computer program language).
I. Title.
QA76.9.U83Y68 1997
005.13’3—dc20 9617226

CIP

Editorial/Production Supervision: Joe Czerwinski
Acquisitions Editor: Mark L. Taub
Manufacturing Buyer: Alexis R. Heydt

Cover Design Director: Jerry Votta

Cover Illustration: Marjory Dressler

Cover Design: Design Source

Composition: Thurn & Taxis

© 1997 by Prentice Hall P TR
Prentice-Hall, Inc.

A Division of Simon & Schuster
Upper Saddle River, NJ 07458

The publisher offers discounts on this book when ordered in bulk quantities.
For more information, contact:

Corporate Sales Department

Prentice Hall P TR

One Lake Street

Upper Saddle River, NJ 07458

Phone: 800-382-3419

Fax: 201-236-7141, e-mail: corpsales @prenhall.com

All rights reserved. No part of this book may be reproduced
in any form or by any means, without permission in writing
from the publisher.

Printed in the United States of America
109 8 7 6 5 4 3 21

ISBN 0-13-461674-X

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro



To my daughter Amanda, the real reason I wrote this book.



Preface

Just add Tcl...

By 1992, I had successfully weaned myself of programming in C and was ready to start
acting like a real engineering manager. Managers should not do programming. They
should spend their time giving reviews, fighting for resources, and enabling their folks to
accomplish great feats (and meet a deadline or two!). At the time, we at SCO (The Santa
Cruz Operation, Inc.) were implementing a graphical user interface (GUI) development
technology we affectionately called the widget server. The widget server was the
brainchild of Andy Schloss, Louie Boczek, and Susan DeTar, designed with the purpose
of enshrouding SCO UNIX systems management with an OSF/Motif interface for the X
environment. The widget server supported Motif programming by extending the
conventional UNIX shell. As cool as it was to generate “instant” Motif “applets” around
UNIX commands, few engineers were interested in doing it with less-than-glamorous
shell scripting.

Then Mark Diekhans entered the picture. As codeveloper of the UNIX
environment-specific TcIX extensions, along with Karl Lehenbauer, Mark eventually
made the suggestion that we try this cool scripting command language from UC
Berkeley, developed by a professor whose name is one of the most mispronounced in the
industry (next to Linux). John Ousterhout’s name is pronounced /OH-stir-howt/
(according to his personal WWW page). So, to make a very long story short, we gave Tcl
a shot and now, four years later, the technology formerly known as the widger server has
been rechristened Visual Tcl and is available on ten UNIX platforms.

As the new manager of the widget server development group back in 1992, I
thought I should develop at least a general notion of what it was like to program with this
new language. My first, rather lofty goal was to create a “Motif wrapper” around the old
BSD network utility rwho (“remote who™). A few hours later, I had a very useful Motif
application up and running, monitoring virtually the entire SCO network of logged-in

Xix



XX

Preface

users. My status as a nonprogramming engineering manager had evaporated within only a
few hours. With this book, I hope you will learn what I did—that with Tcl I could take on
projects for which I felt I had neither the time nor the bandwidth, and be effective.

As evidenced by their demonstration of a new graphical “GUI Builder” at the SCO
Forum conference in August 1995, SCO continues to enhance the feature set of Visual
Tcl. To monitor the newsworthy events of the evolution of Visual Tcl, be sure to check
out the official SCO Visual Tcl home page at:

http://www.sco.com/Products/vtcl/vtcl.html

SCO has trademarked this new language as SCO Visual Tcl. In this book, we will
refer to it simply as Visual Tcl.

Strategy and style

Although Visual Tcl is ideal for a wide range of application development, many of the
examples and discussions in this book are targeted at people who manage computers,
such as system administrators and self-empowered users. UNIX administrators are
usually the last folks to get access to tools, such as GUI scripting, that represent current
technology trends and could make their lives easier (and more fun!). With that in mind, in
addition to including a CD-ROM of Visual Tcl ported to ten flavors of UNIX (attached at
the back of this book), I've made extensive use of UNIX administration-related examples
to convey how Visual Tcl can be used to implement solutions in short order. Many of
these examples represent simple tasks carried out by UNIX system administrators or
experienced users who know their way around UNIX.

The goals behind the design of Visual Tcl were motivated by the demand for the
rapid development of graphical systems management. As we will discuss in Chapter 1,
Modern Scripting, much of the reason for the rise in scripting popularity is being driven
by the need for flexibility and rapid development in the systems management
environment.

This book focuses on examples that illustrate the most commonly used commands.
Hoping to give novice readers the “biggest bang for their buck,” I have focused on the
basic value of each command as it is introduced. I avoid documenting every available
option for the command. Instead, I try to use a narrative writing style to walk you through
the introductory process of learning a new language. When you are ready to dive into
greater detail regarding specific commands, the complete Visual Tcl command language
and associated options are available in Part IV, Command Pages. This section is based on
the man pages acquired from different contributors, including UC Berkeley, SCO, and the
creators of TclX—the Tcl library that gives Visual Tcl its UNIX flavor.

This book was written with the assumption that the reader is familiar with at least
one programming language, ranging from simple UNIX shell scripting to C, or just about
any high-level language such as Pascal.

One last note about style. Dan Heller’s style of writing, as found in the Motif
Programming Manual, volume 6 (O’Reilly & Associates, Inc.), has had a major influence



Preface

on me. He was the first author I encountered who took something as dry as the X/Motif
programming language and explained it in a book that I enjoy cracking open on a regular
basis. I hope I've come close to making The Visual Tcl Handbook as enjoyable to read.

Why Visual Tcl?

The success of the Tcl language is largely due to the power of its X window development
extension called the Tk toolkit. Tk is wonderfully crafted and highly diversified in its
features, capabilities, and adaptability. Tcl/Tk is one of the languages I love to work with.
So, with the availability of Tk, why should you and I be interested in Visual Tcl?

A complete UNIX product

Visual Tcl is a fully supported product, highly focused on leveraging the capabilities of
the UNIX server environment. The base language supports a satisfyingly full range of
UNIX access commands that control processes and manipulate the UNIX file system.
Standard commands supporting enhanced debugging capabilities and built-in TCP/IP
access have been added to make it a valid development option for conducting a wide
range of projects.

Visual Tcl is fully supported by SCO as part of its cross-platform SCO Premier
Motif product, as well as its SCO OpenServer Release 5 operating system. In fact, Visual
Tcl is the core implementation language of SCO’s graphical and character-oriented
systems management environment. Visual Tcl is the only graphical widget-rendering Tcl-
based scripting language that ships fully supported and exposed in a mainstream UNIX
operating system. Soon, SCO will ship Visual Tcl as the native GUI scripting language
for UnixWare.

Designed for the system administrator profile

The Visual Tcl language was expressly designed to be a powerful, easy-to-use GUI
development tool for the system administrator “in the trenches,” as well as for the
developers of graphical systems administration solutions. The widget-building commands
of Visual Tcl support default behavior that requires the shortest of learning curves. By
taking advantage of standard Motif dialogs, in many cases only one command is required
to build, for instance, a file selection box. Conversely, the large number of command
options leaves lots of room for customization and greater control over design issues.

Based on the standard OSF/Motif language

Although Tk has become more compliant with the Motif look and feel, it's still very
different under the covers. The Visual Tcl display server is built on top of the OSF/Motif
library. The Visual Tcl language leverages OSF/Motif conventions and semantics, such as
the control of Motif widget resources. The Visual Tcl language is designed to present a
single layer of control that insulates the developer from the details of the underlying X

library.

XXi



XXii

Preface

For Motif developers, Visual Tcl is ideal for complementing their larger C/Motif
applications with the “glue” of Visual Tcl scripts. The Motif developer can apply the
same geometry management principles to both Visual Tcl scripts and compiled Motif
applications.

Standard Motif Widgets

One of SCO’s goals for Visual Tcl is to open up the display server API so that third-party
widgets can be added. Supporting the Motif API will make it possible to extend Visual
Tcl with the large base of commercially available widget sets.

The use of standard Motif widgets reduces programming effort. Instead of having
to craft commonly needed complex dialogs from scratch, novice developers can gain a
consistent look and feel by taking advantage of standard Motif dialogs.

Policy and widgets for rapid development

By building on top of a moderate amount of built-in policy in the form of default
behavior and the leveraging of OSF/Motif widgets, Visual Tcl supports a level of rapid
development that is faster than developing with Tk. There are extensions to Tk that
provide “mega-widgets,” such as file selection boxes; however, as these are non-Tk
features, the burden is on you, the developer, to link these extensions with your
development system. Also, if control at the X11 level is key to your development project,
Tk may be the appropriate choice.

The Drawn List widget for high-volume data representation

There are a number of widgets that SCO added to the base OSF Motif 1.2 widget set. In
addition to combo box and spin button widgets, SCO added the “Drawn List” widget that
features the ability to incorporate pixmaps in a column-based list widget, similar to the
hierarchical file manager widget in Microsoft’s Windows 3.1.

The Drawn List widget gives Visual Tcl the ability to represent a tremendous
amount of data in a modest amount of graphical real estate. Arranged hierarchically, the
user can view data by expanding or collapsing list items.

An architecture for multiple GUI development...

As you will discover in the Chapter 3, Run-Time Environment, Visual Tcl incorporates a
client-server architecture, separating the Motif-rendering display server from the
interpreter. There are a number of benefits to this, including enhanced performance and
support for “GUI independence.” In fact, the SCO OpenServer version of Visual Tcl
supports two types of user interface “look and feel,” namely, X-based Motif and a curses-
based character version of Motif called Charm. Support for a Microsoft Windows display
server is key to SCO’s future systems management plans as well.



Preface

... and thin client Windows development

SCO is planning to release a Microsoft Windows-based Visual Tcl interpreter in order to
support management of SCO server products from the Windows environment. Visual
Tcl’s client-server architecture will be linked over the network, supporting Windows-
based graphical display servers driven by Visual Tcl scripts executing on UNIX servers.
This design strategy supports the growing trend toward “thin client” application design,
reducing the “application footprint” on desktop environments by shifting the functional
part of the application to the remote server. This topic is discussed in more detail in
Chapter 1, Modern Scripting.

Visual Tcl was not designed to compete with Tk. Instead, it was designed to put the
benefits of Motif development in the hands of people who want to take advantage of GUI
development but who, until now, have not been able to handle the cost and time-
consuming impact of learning GUI development.

If you are a Tcl novice or Tk expert

The Visual Tcl Handbook focuses primarily on the TclIX and Vt extensions provided in
Visual Tcl. This is done somewhat at the expense of going into extensive detail about the
base Tcl language itself. Most of the fundamental Tcl topics are addressed, so that if you
are new to Tcl, you will do just fine when you start some serious development with the
overall language. If you want to learn more about the fine points of the base Tcl language,
you will probably want to consider acquiring one or two books that focus more
painstakingly on the base Tcl language itself, such as Brent Welch’s Introduction to
Tcl/Tk Programming. Keep in mind that the entire Tcl language, version 7.3, is
documented in the Command Pages section of this book.

If you are already a Tk/Tcl programmer and have not worked with the extensions of
the TclX library, this book provides an introduction to many of the key features.

Organization

The organization of this book is based on major sections that focus on background and
architecture, Tcl and TclX basics, GUI concepts, programming with Visual Tcl, and,
finally, the entire Visual Tcl language in man page format. Here are some details about
each part and the chapters they contain.

Part I: Introductions

These three chapters address the role of scripting today, introducing Visual Tcl. Its
architecture and Tcl components are reviewed in detail. Finally, a step-by-step exercise
that builds a “graphical who™ application is provided to give you a flavor of Visual Tcl
programming before diving into the details.

XXili



XXiV

Preface

Part Il: Essential Tcl

Essential Tcl covers the broad spectrum on non-GUI building commands contributed by
the base Tcl language and the TclX command set that gives Visual Tcl its UNIX server
flavor. Special attention is given to the parsing principles and syntax rules of the Tcl
interpreter, intended to help the reader avoid the typical pitfalls of those new to Tcl
development.

Part llI: Visual Tcl

After a brief overview of OSF/Motif, this section covers Visual Tcl concepts such as how
callback procedures receive user input information from the graphical display server. The
five Visual Tcl option classes are discussed as major Vt commands are reviewed,
including those for building custom dialogs, graphical hierarchical lists, and pulldown
menus. A Rolodex application is described and used to illustrate common concepts of
Visual Tcl programming. The complete Rolodex application is made available on the CD-
ROM. This section is wrapped up with a discussion of how to apply a design strategy to
the development of interfaces for the configuration of your application.

Part IV: Command Pages

This part is divided into three sections, providing man pages for the nongraphical Tcl and
TclX commands, the graphical Vt commands, and the Vx extensions, which add another
level of ease of use to the Visual Tcl language.

Conventions

Code Fragments

There are many code fragments in this book, many of which are contained in the CD-
ROM at the back of this book.

# Code fragments will look like this:
set bookTitle “The Visual Tcl Handbook”

Visual Tcl commands that appear in code fragments or normal paragraph text will
be identified with the typeface Courier bold, such as the variable-assigning set
command above.

Output

Text generated by the execution of a Visual Tcl command is prefaced with the  symbol,
followed by the output text in Courier fixed font. In the book, we make extensive use of
the echo command to write the contents of a variable to stdout. For Tcl programmers,
this is a TcIX command that is roughly equivalent to the puts stdout command. The



Preface

statement below combines the echo command with the string stored in the variable
bookTitle from the statement above.

echo “This book is called $bookTitle”

results in the following output.

®» This book is called The Visual Tcl Handbook

Tasks

Tasks are identified like this. Depending on the context, they are either suggested TAGK

exercises for the reader or attempts to illustrate a concept or use of a command by

Sfollowing a suggested task.

Hints and tips boxes

into a tiny little box.

Hint, tips, and clarification boxes ...

... are bordered boxes that look like this. Their purpose is to point out
some subtle uses or characteristics of Visual Tcl, to pass along neat
tricks, or to highlight uses of particularly useful commands. The font
used here is Helvetica-Narrow, ideal for squeezing a lot of information

Font conventions

e bold Courier

e ltalicized Courier

e plain Courier
e plain Times

e Helvetica-Narrow

Command syntax

Visual Tcl commands

Variables or arguments passed to Visual Tcl
commands

Procedures and callbacks
Normal book text

Hints and tips boxes

The conventions listed in Table 1 are used to identify required and optional arguments to
Visual Tcl commands. We have attempted to use self-descriptive argument names
wherever possible (such as £ileName to indicate that the argument requires the name of

a file).

XXV




XXVi Preface

Table 1 Conventions for specifying command arguments

*

varName

var
arg
body
expr

test

list

[arg]

string

Indicates that the command is contributed by the TclX library. This
is provided for those who want to write portable code for
environments where Visual Tcl and TclX are not available.
A user-defined variable name for pass-by-reference. Applies to any
variable of the form <object>Name. Examples of other self-
describing variable names are fileName, listName, and
arrayName.
A generic name for a user-defined variable.
A catch-all reference to an argument.
A Tecl script of one or more Tcl commands.
An expression that combines values with one or more operators,
such as

SvarName == "done" or "$amount > 1.00"

An expression used to test a condition, as in a flow of control
command.
A list of items, such as

{apples oranges peaches olallieberries}
When the command is invoked, 1ist may also be represented by a
variable where $ substitution is performed, such as

llength SmyList
Square brackets indicate that the argument is optional. arg may be
either a user-created value (italicized) or a predefined command
option (nonitalicized)
A user-provided string in quotes, such as "The UNIX System”.
May be a variable, such as StitIe, containing a quoted string.

Command arguments that are italicized imply that the user determines the
argument’s value. Arguments like test and body will always be italicized, since the
actual argument is created by the user. Nonitalicized arguments imply that a keyword
known to the command is to be provided as an option, such as compare in the following

command:

string compare stringl string2

UNIX-isms and other details

All of the examples used throughout the book were created with SCO OpenServer
Release 5 version of SCO Visual Tcl 1.0. Most of the examples were tested on the Solaris
port of SCO Visual Tcl to verify their portability. The Rolodex example that is used to



Preface

illustrate the use of most of the Visual Tcl graphical Vt commands has been written to be
highly portable. The examples scattered throughout the book that utilize UNIX system
commands are based on SCO OpenServer Release 5 and may, therefore, require
“tweaking” to run on your favorite UNIX platform.

Visual Tcl on CD-ROM

SCO Visual Tcl 1.0 is a core component of the SCO OpenServer Release 5 family of
operating systems. If you own or have access to these servers, then you already have
access to Visual Tcl. In fact, you also have access to many, many scripts that were written
in Visual Tcl as part of the SCO OpenServer native systems management environment
called SCOadmin. Many of the SCOadmin application scripts are located in

/opt/K/SCO/Unix/5.0.0Cl/sa

SCO also provides a kit of SCOadmin tools and demonstration Visual Tcl scripting
that enable you to write applications even faster than with raw Visual Tcl. It is
downloadable via anonymous ftp from

ftp.sco.com: /TLS/t1ls575.custom (tools and doc)
ftp.sco.com: /TLS/t1s575.1tr (cover letter, install info)

and should be useful for you even if you are not an SCO OpenServer customer. This kit
has not been ported to non-SCO platforms, so treat it simply as a learning tool.

The CD-ROM enclosed in the back of this book contains the complete binary ports
of SCO Visual Tcl 1.0 to ten UNIX platforms, including SCO Open Desktop. SCO
requires that you purchase SCO Premier Motif in order to enjoy full support of Visual
Tcl. SCO Visual Tcl 1.0 for the following platforms is provided on the CD-ROM.

v’ SunSoft SunOS 4.1.2 (For SPARC) v HP HP-UX 9.0.1

v SunSoft Solaris 2.1 (For SPARC) v IBM AIX 3.2.5

v SunSoft Selaris 2.1 (For Intel) v/ SGI IRIX 5.0.2

v Digital Unix (OSF/1) 3.0 (For Alpha) v’ SCO Open Desktop 3.0
v’ SCO UnixWare 2.01 v Sequent DYNIX/ptx 4.0.3

Visual Tcl Handbook Web Page

The capability of the Web, and Prentice Hall’s support. has given me the opportunity to
continue the evolution of this book with The Visual Tcl Handbook Home Page. This page
can be accessed at the URL:

http://www/prenhall.com/young

XXVii



XXViii

Preface

My goal is to make this home page a place where I can further explore topics that I
was able to only graze over in the book, as well as offer timely information of Visual Tcl-
related developments. Topics areas will include:

Hints and Tips

e.g., Development issues with Charm
Expanded examples of passing variable information to callbacks

Errata
List of errors encountered in the book.

Enhancements of book discussions

Topics that might require further explanation are covered here. These topics go beyond
the simple hints and tips.

Examples
A collection of examples sent to me from Visual Tcl users.

Rolodex Demo

My hope is to evolve the book’s rolodex example with enhanced functionality as well as
bug fixes.

Visual Tcl News and Thoughts

Late-breaking news related to Visual Tcl will appear here, as well as any help
announcements that might point to recently-identified bugs.

If there is a topic that isn’t addressed in this book, be sure to check the home page.
If it isn’t there either, send e-mail to me at david@inforef.com and we will do what we
can to add it to the page.

Credits

Heller, Dan. 1991. Motif Programming Manual. Sebastopol, CA: O’Reilly & Associates,
Inc.

Ousterhout, John K. 1994. Tcl and the Tk toolkit. Reading, MA: Addison-Wesley
Publishing Company.

Welch, Brent. 1995. Practical Programming in Tcl and Tk. Upper Saddle River, NJ:
Prentice Hall PTR.



Preface

Acknowledgments

Having the opportunity to publicly thank the people who support you is the best part of
writing a book. Besides introducing Tcl to SCO, Mark Diekhans gave me the support and
upbeat attention I needed as he patiently explained to me the subtleties of Tcl. People
along the way who gave me the vital support I needed to keep the faith were led by Mike
Shelton, who was the most supportive executive I've ever known. Other SCO
management folks like Ron Rasmussen and Lorie Goudie have always supported me as
friend and colleague.

A very special thank you is reserved for Ralf Holighaus of NetCS
Informationstechnik GmbH. Ralf inspired the entirety of Chapter 22, Design issues for
configuration scripts. No matter how wonderful a GUI-building language may be, it isn’t
worth much without good advice on user interface design. Ralf’s wonderful Visual Tcl
presentation at SCO Forum 95 inspired me to include his observations in this book.

The folks of the SCO Cambridge engineering team, particularly Olaf von Bremen
and Zibi Perlin, made Visual Tcl a multiplatform reality as a component of the SCO
Premier Motif CD-ROM, much of it through their own time and perseverance. Thanks
Olaf! I hope this makes your efforts even more rewarding. I owe Olaf and Zibi, and the
management team of Chris Scheybeler and Michelle Fearn, a great deal for supporting
someone on the other side of the world who wanted to write a book.

Thanks to Michael “Hops™ Hopkirk for his technical advice and inspiring vision for
the next generation of Visual Tcl; also his SCO engineering partners, Shawn McMurdo,
Mary Toscano, Susan DeTar, Bob Davis, and Donna Moore, representing the Visual Tcl
development team, past and present. Thanks also to Wing Eng, Hops’s predecessor, for
making that great midcourse redesign that turned Visual Tcl language into a truly unique
solution for those who have been reticent to move into graphical development. The entire
engineering team poured their hearts into a project that had them swimming against the
popular current.

Thanks to other former SCO colleagues Ron Record (of Skunkware fame), Chris
Ratcliffe, Dion Johnson, and Brett Matesen. I thank them for going out of their way to
help me when I, and Visual Tcl, needed it.

Thanks to Mark Taub of Prentice Hall, the editor who gave me just enough rope to
write this book, I appreciate his faith, confidence, and patience.

Thanks to Michael O’Brien of Go Ahead Software. Michael’s satisfying experience
with using Tcl in his systems management product was particularly inspiring and gave me
a number of ideas for examples in the book. Michael’s inspiring comment to me was that
he knew that Tcl was the way to go when he saw that just about every Can I do this?
question posted to comp.lang.tcl was answered with a “yes.”

Thanks to the gang of seven, Jean-Pierre Radley, Jerry Heyman, Fulko Hew, Bob
Stockler, John ‘tms’ Navarra, Bueds Marc, and Tom Podnar, for their detailed reviews of
the Tcl/TclX chapters. I appreciate their patience as I slid down the learning curve.

XXiX



XXX Preface

Thanks to Joe Moss for providing his Tcl Language Usage Questions and Answers
Web page, http://route.psg.com/tcl.html, which gave me lots of ideas for example code.

Thanks to my start-up brothers of The Information Refinery, Inc., Paul Morgan,
Michael Browder, and John Marco. Imagine trying to write a book and start a new
company at the same time.

Thanks to my life friend Gale Frances for supporting a friend through the long haul;
and to Lynne Hughes for her inspirational e-mail and miraculous love that pulled me
through that last few months. And to Janet Young, thanks for being so supportive and
helping me to find the time to wrap this book up.

Finally, like all fathers who have dreams, I did this book for my daughter Amanda
and hope that it will inspire her to latch onto opportunities that turn dreams into
rewarding accomplishments.



Contents

LLIST OF PAIUTER s consonuvsconsuommesmmsms conasnes s s oo vassans 33 s s P Vs iy s nwamsnses XV
LISt OF TADIES ettt ettt e e e e ae e e e s aae e s e e eae e e s e eaneeenns XVvil
PLE ACE 11 evveseeesemmsnars vasammesssnsssansnonssnsnnnssmumnnnonionsnss ih ot 6 54555 364 F¥awE SE0R SHFTHFY XiX

MoOdern. SCEPLILE wovcssonusasssscinssssssasmsmassasmnsrortsssnsosssvmsipsnavssasmrsasesnss 3
SCHPHNG LOAAY: .. cosessnssssimssissssosamomssssssmonion mossssesanss s sisissivesssisiamsassersaiserssssesas 3
Scripting and SyStems Management .............ccueeueeueeiriueieeieieseses e 5
Thin clients, three-tiered computing, and distributed objects...........c..coceuuene 6
AN TES TUNL 100 it 7
Introducing VISUAL TGl sssssuosisnessssssassnsnsusimssmassassnsovssesssesganses ssigsenanionssmissussssonssns 8
Getting productive with Visual Tcl.........cccccviiiiniiiiniiiiiiiicccccee 8
Designed to manipulate data €asily........c.cccoeoreniiiineniiininciece e 9
Full UNIX development environment.............cccceereniiieiniciecisiiiensneneienens 10
High-volume data SUPPOTT ........ccuiiiiiiiiiiiiereeeee et 10
Consistent-looking, easy-to-build user dialogs............coeveviriiiiiicicncnnnnn. 11
Wheii Visual Tcl is not the SOINHON c...evisssssisssisssisiisssmsirsvssvesiisisssisiiosses 12
Visual Tcl and other scripting technolOgIes ............coceviriiiierieneneiieieeenne 13
A QUICK STATT .oeiiieieeieeeeee e 15
The UNIX Who: COmMMANG. ...cmusmmisemmesmsminsasmisnenssmissmmmmsinaissass 15
The: Graphical Whe PIOSTAIN w.sessssnssssessosissssnssissssssrinivissssissvassissaisisssisnins 16
Adding a procedure: GetUSErLiSt.......c..coviiiriiiiriiiiieieierie et 20
Adding a callback: ShowUserInfoCBi...........cccccoiiviiiiiiiiiiiinecceeceins 21
TaSKS £0 CONSIALT ...ttt ene 26
Run-Time Environment ...........cceooiiiiiiiiieiiieeiieeceeeeeee e 27
The ' Visnal Tel 1a0gUAEE ssavsmnnmmsmmsmsimmmismnsms s ass i 28
The Visual Tcl client/server architeCture ............ccceeeverereeierieneneneeieeeseenenns 36
Summary of the Visual Tcl architeCture ............ccoeeeierieiienenieieieeceeeeee 43

Part II: Essential Tcl

Parsing Tel Commands . cmasnomsmsminincnnsimnvii it 47
Visual Tcl execution €NVIFONMENTS ...........cceveieiiiieeieeiieeeeeireeeeieeeeeseneeeeeeeeeeeeans 48
Evaluating Tcl coOmmands.........c..coeviiiiiiiiiieiesine e 49
SUDSHIULION TUIES! ...oiieeiieie ettt e e et e e e e eeaaeeeaeean 54
COTRITTRINES ossescansssssinssanians samsssss cauassmeiess oA iAs o SR S TR o S T VR ST ot 63
Reviewing TCl SYNtaX .....c.ocoiiiiiiieiieie e 64
TCl ProCEAUIES....ccoeieieieieeeeeeee e 67
PrOCEAUTES ...t eeeeeeaeeaeenaeens 67



