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An Introduction to Celestial Mechanics
L T T e T e

This accessible text on classical celestial mechanics—the principles governing the mo-
tions of bodies in the solar system—provides a clear and concise treatment of virtually
all the major features of solar system dynamics. Building on advanced topics in classical
mechanics, such as rigid body rotation, Lagrangian mechanics, and orbital perturbation
theory, this text has been written for well-prepared undergraduates and beginning gradu-
ate students in astronomy, physics, mathematics, and related fields. Specific topics cov-
ered include Keplerian orbits; the perihelion precession of the planets; tidal interactions
among the Earth, Moon, and Sun; the Roche radius; the stability of Lagrange points in
the three-body problem; and lunar motion. More than 100 exercises allow students to
gauge their understanding; a solutions manual is available to instructors. Suitable for a
first course in celestial mechanics, this text is the ideal bridge to higher-level treatments.

Richard Fitzpatrick is professor of physics at the University of Texas at Austin, where
he has been a faculty member since 1994. He earned his MA in physics at the University
of Cambridge and his DPhil in astronomy at the University of Sussex. He is a longstand-
ing Fellow of the Royal Astronomical Society and the American Physical Society and
author of Maxwell’'s Equations and the Principles of Electromagnetism (2008).



Preface

The aim of this book is to bridge the considerable gap that exists between standard
undergraduate mechanics texts, which rarely cover topics in celestial mechanics more
advanced than two-body orbit theory, and graduate-level celestial mechanics texts, such
as the well-known books by Moulton (1914), Brouwer and Clemence (1961), Danby
(1992), Murray and Dermott (1999), and Roy (2005). The material presented here is
intended to be intelligible to an advanced undergraduate or beginning graduate student
with a firm grasp of multivariate integral and differential calculus, linear algebra, vector
algebra, and vector calculus.

The book starts with a discussion of the fundamental concepts of Newtonian me-
chanics, as these are also the fundamental concepts of celestial mechanics. A number
of more advanced topics in Newtonian mechanics that are needed to investigate the mo-
tions of celestial bodies (e.g., gravitational potential theory, motion in rotating reference
frames, Lagrangian mechanics, Eulerian rigid body rotation theory) are also described
in detail in the text. However, any discussion of the application of Hamiltonian mechan-
ics, Hamilton-Jacobi theory, canonical variables, and action-angle variables to problems
in celestial mechanics is left to more advanced texts (see, for instance, Goldstein, Poole,
and Safko 2001).

Celestial mechanics (a term coined by Laplace in 1799) is the branch of astronomy
that is concerned with the motions of celestial objects—in particular, the objects that
make up the solar system—under the influence of gravity. The aim of celestial mechan-
ics is to reconcile these motions with the predictions of Newtonian mechanics. Mod-
ern analytic celestial mechanics started in 1687 with the publication of the Principia
by Isaac Newton (1643—1727) and was subsequently developed into a mature science
by celebrated scientists such as Euler (1707-1783), Clairaut (1713-1765), D’ Alembert
(1717-1783), Lagrange (1736-1813), Laplace (1749-1827), and Gauss (1777-1855).
This book is largely devoted to the study of the “classical” problems of celestial me-
chanics that were investigated by these scientists. These problems include the figure
of the Earth; tidal interactions among the Earth, Moon, and Sun; the free and forced
precession and nutation of the Earth; the three-body problem; the secular evolution of
the solar system; the orbit of the Moon; and the axial rotation of the Moon. However,
any discussion of the highly complex problems that arise in modern celestial mechan-
ics, such as the mutual gravitational interaction between the various satellites of Jupiter
and Saturn, the formation of the Kirkwood gaps, the dynamics of planetary rings, and
the ultimate stability of the solar system, is again left to more advanced texts (see, in
particular, Murray and Dermott 1999).

A number of topics, closely related to classical celestial mechanics, are not discussed
in this book for the sake of brevity. The first of these is positional astronomy—the



Preface

branch of astronomy that is concerned with finding the positions of celestial objects
in the Earth’s sky at a particular instance in time. Interested readers are directed to
Smart (1977). The second excluded topic is the development of numerical methods
for the solution of problems in celestial mechanics. Interested readers are directed to
Danby (1992). The third (mostly) excluded topic is astrodynamics: the application of
Newtonian dynamics to the design and analysis of orbits for artificial satellites and space
probes. Interested readers are directed to Bate, Mueller, and White (1977). The final
excluded topic is the determination of the orbits of celestial objects from observational
data. Interested readers are again directed to Danby (1992).
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Newtonian mechanics

1.1 Introduction
g e e e

Newtonian mechanics is a mathematical model whose purpose is to account for the
motions of the various objects in the universe. The general principles of this model were
first enunciated by Sir Isaac Newton in a work titled Philosophiae Naturalis Principia
Mathematica (Mathematical Principles of Natural Philosophy). This work, which was
published in 1687, is nowadays more commonly referred to as the Principia.'

Until the beginning of the twentieth century, Newtonian mechanics was thought to
constitute a complete description of all types of motion occurring in the universe. We
now know that this is not the case. The modern view is that Newton’s model is only
an approximation that is valid under certain circumstances. The model breaks down
when the velocities of the objects under investigation approach the speed of light in a
vacuum, and must be modified in accordance with Einstein’s special theory of relativity.
The model also fails in regions of space that are sufficiently curved that the propositions
of Euclidean geometry do not hold to a good approximation, and must be augmented
by Einstein’s general theory of relativity. Finally, the model breaks down on atomic and
subatomic length scales, and must be replaced by quantum mechanics. In this book,
we shall (almost entirely) neglect relativistic and quantum effects. It follows that we
must restrict our investigations to the motions of /arge (compared with an atom), slow
(compared with the speed of light) objects moving in Euclidean space. Fortunately,
virtually all the motions encountered in conventional celestial mechanics fall into this
category.

Newton very deliberately modeled his approach in the Principia on that taken in
Euclid’s Elements. Indeed, Newton’s theory of motion has much in common with a
conventional axiomatic system, such as Euclidean geometry. Like all axiomatic sys-
tems, Newtonian mechanics starts from a set of terms that are undefined within the
system. In this case, the fundamental terms are mass, position, time, and force. It is
taken for granted that we understand what these terms mean, and, furthermore, that they
correspond to measurable quantities that can be ascribed to, or associated with, objects
in the world around us. In particular, it is assumed that the ideas of position in space,
distance in space, and position as a function of time in space are correctly described
by conventional Euclidean vector algebra and vector calculus. The next component
of an axiomatic system is a set of axioms. These are a set of unproven propositions,

! An excellent discussion of the historical development of Newtonian mechanics, as well as the physical and
philosophical assumptions that underpin this theory, is given in Barbour 2001.



2 Newtonian mechanics

involving the undefined terms, from which all other propositions in the system can be
derived via logic and mathematical analysis. In the present case, the axioms are called
Newton’s laws of motion and can be justified only via experimental observation. Note,
incidentally, that Newton’s laws, in their primitive form, are applicable only to point
objects (i.e., objects of negligible spatial extent). However, these laws can be applied to
extended objects by treating them as collections of point objects.

One difference between an axiomatic system and a physical theory is that, in the
latter case, even if a given prediction has been shown to follow necessarily from the
axioms of the theory, it is still incumbent on us to test the prediction against experi-
mental observations. Lack of agreement might indicate faulty experimental data, faulty
application of the theory (for instance, in the case of Newtonian mechanics, there might
be forces at work that we have not identified), or, as a last resort, incorrectness of the
theory. Fortunately, Newtonian mechanics has been found to give predictions that are in
excellent agreement with experimental observations in all situations in which it would
be expected to hold.

In the following, it is assumed that we know how to set up a rigid Cartesian frame of
reference and how to measure the positions of point objects as functions of time within
that frame. It is also taken for granted that we have some basic familiarity with the laws
of mechanics.

1.2 Newton’s laws of motion

Newton’s laws of motion, in the rather obscure language of the Principia, take the fol-
lowing form:

1. Every body continues in its state of rest, or uniform motion in a straight line, unless
compelled to change that state by forces impressed on it.

2. The change of motion (i.e., momentum) of an object is proportional to the force
impressed on it, and is made in the direction of the straight line in which the force is
impressed.

3. To every action there is always opposed an equal reaction; or, the mutual actions of
two bodies on each other are always equal, and directed to contrary parts.

Let us now examine how these laws can be applied to a system of point objects.

1.3 Newton’s first law of motion
- T T

Newton’s first law of motion essentially states that a point object subject to zero net
external force moves in a straight line with a constant speed (i.e., it does not accelerate).
However, this is true only in special frames of reference called inertial frames. Indeed,
we can think of Newton’s first law as the definition of an inertial frame: an inertial frame
of reference is one in which a point object subject to zero net external force moves in a
straight line with constant speed.
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Suppose that we have found an inertial frame of reference. Let us set up a Cartesian
coordinate system in this frame. The motion of a point object can now be specified
by giving its position vector, r = (x, y, z), with respect to the origin of the coordinate
system, as a function of time, ¢. Consider a second frame of reference moving with
some constant velocity u with respect to the first frame. Without loss of generality, we
can suppose that the Cartesian axes in the second frame are parallel to the corresponding
axes in the first frame, that u = (1, 0, 0), and, finally, that the origins of the two frames
instantaneously coincide at ¢ = 0. (See Figure 1.1.) Suppose that the position vector of
our point object is r’ = (X, ¥, z’) in the second frame of reference. It is evident, from
Figure 1.1, that at any given time, ¢, the coordinates of the object in the two reference
frames satisfy

X = x—-ut, (1.1)
Yy o= (1.2)

and
g =ig; (1.3)

This coordinate transformation was first discovered by Galileo Galilei (1564—1642), and
is nowadays known as a Galilean transformation in his honor.

By definition, the instantaneous velocity of the object in our first reference frame
is given by v = dr/dt = (dx/dt, dy/dt, dz/dt), with an analogous expression for the
velocity, v/, in the second frame. It follows, from differentiation of Equations (1.1)—
(1.3) with respect to time, that the velocity components in the two frames satisfy
V. = vy —u, (1.4)

X

vy = vy, (1.5)
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and

vl = v.. (1.6)

V=v-u (657 4)

Finally, by definition, the instantaneous acceleration of the object in our first refer-
ence frame is given by a = dv/dt = (dv./dt, dv,/dt, dv./dt), with an analogous ex-
pression for the acceleration, a’, in the second frame. It follows, from differentiation of
Equations (1.4)—(1.6) with respect to time, that the acceleration components in the two
frames satisfy

@, = ay, (1.8)

a;, = ay, (1.9)
and

4. =ua;. (1.10)

a’ =a. (1.11)

According to Equations (1.7) and (1.11), if an object is moving in a straight line with
a constant speed in our original inertial frame (i.e., if a = 0), then it also moves in a
(different) straight line with a (different) constant speed in the second frame of reference
(i.e., a’ = 0). Hence, we conclude that the second frame of reference is also an inertial
frame.

A simple extension of the preceding argument allows us to conclude that there is an
infinite number of different inertial frames moving with constant velocities with respect
to one another. Newton thought that one of these inertial frames was special and defined
an absolute standard of rest: that is, a static object in this frame was in a state of absolute
rest. However, Einstein showed that this is not the case. In fact, there is no absolute
standard of rest: in other words, all motion is relative—hence, the name relativity for
Einstein’s theory. Consequently, one inertial frame is just as good as another as far as
Newtonian mechanics is concerned.

But what happens if the second frame of reference accelerates with respect to the
first? In this case, it is not hard to see that Equation (1.11) generalizes to

a’ =a- (1.12)

E?
where u(z) is the instantaneous velocity of the second frame with respect to the first.
According to this formula, if an object is moving in a straight line with a constant speed
in the first frame (i.e., if a = 0), then it does not move in a straight line with a constant
speed in the second frame (i.e., a’ # 0). Hence, if the first frame is an inertial frame,
then the second is not.
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A simple extension of the preceding argument allows us to conclude that any frame
of reference that accelerates with respect to a given inertial frame is not itself an inertial
frame.

For most practical purposes, when studying the motions of objects close to the Earth’s
surface, a reference frame that is fixed with respect to this surface is approximately in-
ertial. However, if the trajectory of a projectile within such a frame is measured to high
precision, then it will be found to deviate slightly from the predictions of Newtonian
mechanics. (See Chapter 5.) This deviation is due to the fact that the Earth is rotating,
and its surface is therefore accelerating toward its axis of rotation. When studying the
motions of objects in orbit around the Earth, a reference frame whose origin is the center
of the Earth (or, to be more exact, the center of mass of the Earth-Moon system), and
whose coordinate axes are fixed with respect to distant stars, is approximately inertial.
However, if such orbits are measured to extremely high precision, then they will again
be found to deviate very slightly from the predictions of Newtonian mechanics. In this
case, the deviation is due to the Earth’s orbital motion about the Sun. When studying the
orbits of the planets in the solar system, a reference frame whose origin is the center of
the Sun (or, to be more exact, the center of mass of the solar system), and whose coor-
dinate axes are fixed with respect to distant stars, is approximately inertial. In this case,
any deviations of the orbits from the predictions of Newtonian mechanics due to the
orbital motion of the Sun about the galactic center are far too small to be measurable. It
should be noted that it is impossible to identify an absolute inertial frame—the best ap-
proximation to such a frame would be one in which the cosmic microwave background
appears to be (approximately) isotropic. However, for a given dynamic problem, it is al-
ways possible to identify an approximate inertial frame. Furthermore, any deviations of
such a frame from a true inertial frame can be incorporated into the framework of New-
tonian mechanics via the introduction of so-called fictitious forces. (See Chapter 5.)

1.4 Newton’s second law of motion
i T e

Newton’s second law of motion essentially states that if a point object is subject to an
external force, f, then its equation of motion is given by

dp
— =f ¥
o : (1.13)

where the momentum, p, is the product of the object’s inertial mass, m, and its velocity,
v. If m is not a function of time, then Equation (1.13) reduces to the familiar equation

dv ¢
m—=1f. (1.14)
This equation is valid only in an inertial frame. Clearly, the inertial mass of an object
measures its reluctance to deviate from its preferred state of uniform motion in a straight
line (in an inertial frame). Of course, the preceding equation of motion can be solved
only if we have an independent expression for the force, f (i.e., a law of force). Let us
suppose that this is the case.
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An important corollary of Newton’s second law is that force is a vector quantity. This
must be the case, as the law equates force to the product of a scalar (mass) and a vector
(acceleration).? Note that acceleration is obviously a vector because it is directly related
to displacement, which is the prototype of all vectors. One consequence of force being
a vector is that two forces, f| and f», both acting at a given point, have the same effect as
a single force, f = f; + f,, acting at the same point, where the summation is performed
according to the laws of vector addition. Likewise, a single force, f, acting at a given
point, has the same effect as two forces, f; and f,, acting at the same point, provided that
f; + f, = f. This method of combining and splitting forces is known as the resolution of
forces; it lies at the heart of many calculations in Newtonian mechanics.

Taking the scalar product of Equation (1.14) with the velocity, v, we obtain

dv._md(v-v) m dv*

ML = e =V 1.I5
"u T2 a2 v (1.15)
This can be written
dK
— =f-v, 1.16
dt 5 ( )
where
1
K:Emvz. (1.17)

The right-hand side of Equation (1.16) represents the rate at which the force does work
on the object—that is, the rate at which the force transfers energy to the object. The
quantity K represents the energy that the object possesses by virtue of its motion. This
type of energy is generally known as kinetic energy. Thus, Equation (1.16) states that
any work done on a point object by an external force goes to increase the object’s kinetic
energy.

Suppose that under the action of the force, f, our object moves from point P at time
t; to point Q at time f,. The net change in the object’s kinetic energy is obtained by
integrating Equation (1.16):

12 Q
AKzf f‘VdI‘:f f-dr, (1.18)
h P

because v = dr/dt. Here, dr is an element of the object’s path between points P and Q,
and the integral in r represents the net work done by the force as the object moves along
the path from P to Q.

As is well known, there are basically two kinds of forces in nature: first, those for
which line integrals of the type f ,Q,f - dr depend on the end points but not on the path
taken between these points; second, those for which line integrals of the type f gf - dr
depend both on the end points and the path taken between these points. The first kind of
force is termed conservative, whereas the second kind is termed non-conservative. It can
be demonstrated that if the line integral fPQ f-dr is path independent, for all choices of P
and Q, then the force f can be written as the gradient of a scalar field. (See Section A.5.)

2 A scalar is a physical quantity that is invariant under rotation of the coordinate axes. A vector is a physical
quantity that transforms in an analogous manner to a displacement under rotation of the coordinate axes.
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In other words, all conservative forces satisfy
f(r)=-VU (1.19)

for some scalar field U(r). [Incidentally, mathematicians, as opposed to physicists and
astronomers, usually write f(r) = +VU.] Note that

Q
f VU -dr =4U = U(Q) - U(P), (1.20)

P
irrespective of the path taken between P and Q. Hence, it follows from Equation (1.18)
that

4K = AU (1.21)
for conservative forces. Another way of writing this is
E = K + U = constant. (1.22)

Of course, we recognize Equation (1.22) as an energy conservation equation: E is the
object’s total energy, which is conserved; K is the energy the object has by virtue of
its motion, otherwise known as its kinetic energy; and U is the energy the object has
by virtue of its position, otherwise known as its potential energy. Note, however, that
we can write energy conservation equations only for conservative forces. Gravity is
an obvious example of such a force. Incidentally, potential energy is undefined to an
arbitrary additive constant. In fact, it is only the difference in potential energy between
different points in space that is well defined.

1.5 Newton’s third law of motion

Consider a system of N mutually interacting point objects. Let the ith object, whose
mass is m;, be located at position vector r;. Suppose that this object exerts a force f;
on the jth object. Likewise, suppose that the jth object exerts a force f;; on the ith
object. Newton’s third law of motion essentially states that these two forces are equal
and opposite, irrespective of their nature. In other words,

£ = —f;. (1.23)

(See Figure 1.2.) One corollary of Newton’s third law is that an object cannot exert a
force on itself. Another corollary is that all forces in the universe have corresponding
reactions. The only exceptions to this rule are the fictitious forces that arise in non-
inertial reference frames (e.g., the centrifugal and Coriolis forces that appear in rotating
reference frames—see Chapter 5). Fictitious forces do not generally possess reactions.

Newton’s third law implies action at a distance. In other words, if the force that object
i exerts on object j suddenly changes, then Newton’s third law demands that there must
be an immediate change in the force that object j exerts on object i. Moreover, this must
be true irrespective of the distance between the two objects. However, we now know
that Einstein’s special theory of relativity forbids information from traveling through



