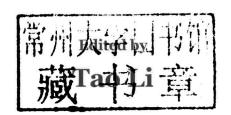
Chapman & Hall/CRC
Data Mining and Knowledge Discovery Series

EVENT MINING


ALGORITHMS AND APPLICATIONS

Edited by Tao Li

EVENT MINING ALGORITHMS AND APPLICATIONS

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business A CHAPMAN & HALL BOOK

CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

© 2016 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed at CPI UK on sustainably sourced paper Version Date: 20150729

International Standard Book Number-13: 978-1-4665-6857-0 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

EVENT MINING ALGORITHMS AND APPLICATIONS

Chapman & Hall/CRC Data Mining and Knowledge Discovery Series

SERIES EDITOR Vipin Kumar

University of Minnesota

Department of Computer Science and Engineering

Minneapolis, Minnesota, U.S.A.

AIMS AND SCOPE

This series aims to capture new developments and applications in data mining and knowledge discovery, while summarizing the computational tools and techniques useful in data analysis. This series encourages the integration of mathematical, statistical, and computational methods and techniques through the publication of a broad range of textbooks, reference works, and handbooks. The inclusion of concrete examples and applications is highly encouraged. The scope of the series includes, but is not limited to, titles in the areas of data mining and knowledge discovery methods and applications, modeling, algorithms, theory and foundations, data and knowledge visualization, data mining systems and tools, and privacy and security issues.

PUBLISHED TITLES

ACCELERATING DISCOVERY : MINING UNSTRUCTURED INFORMATION FOR HYPOTHESIS GENERATION

Scott Spangler

ADVANCES IN MACHINE LEARNING AND DATA MINING FOR ASTRONOMY Michael J. Way, Jeffrey D. Scargle, Kamal M. Ali, and Ashok N. Srivastava

BIOLOGICAL DATA MINING

Jake Y. Chen and Stefano Lonardi

COMPUTATIONAL BUSINESS ANALYTICS

Subrata Das

COMPUTATIONAL INTELLIGENT DATA ANALYSIS FOR SUSTAINABLE

DEVELOPMENT

Ting Yu, Nitesh V. Chawla, and Simeon Simoff

COMPUTATIONAL METHODS OF FEATURE SELECTION

Huan Liu and Hiroshi Motoda

CONSTRAINED CLUSTERING: ADVANCES IN ALGORITHMS, THEORY,

AND APPLICATIONS

Sugato Basu, Ian Davidson, and Kiri L. Wagstaff

CONTRAST DATA MINING: CONCEPTS, ALGORITHMS, AND APPLICATIONS

Guozhu Dong and James Bailey

DATA CLASSIFICATION: ALGORITHMS AND APPLICATIONS

Charu Chargarawa 需要完整PDF请访问: www.ertongbook.com

DATA CLUSTERING: ALGORITHMS AND APPLICATIONS Charu C. Aggarawal and Chandan K. Reddy

DATA CLUSTERING IN C++: AN OBJECT-ORIENTED APPROACH

Guojun Gan

DATA MINING FOR DESIGN AND MARKETING Yukio Ohsawa and Katsutoshi Yada

DATA MINING WITH R: LEARNING WITH CASE STUDIES

Luís Torgo

EVENT MINING: ALGORITHMS AND APPLICATIONS Tao Li

FOUNDATIONS OF PREDICTIVE ANALYTICS

James Wu and Stephen Coggeshall

SECOND EDITION

Harvey J. Miller and Jiawei Han

HANDBOOK OF EDUCATIONAL DATA MINING

Cristóbal Romero, Sebastian Ventura, Mykola Pechenizkiy, and Ryan S.J.d. Baker

GEOGRAPHIC DATA MINING AND KNOWLEDGE DISCOVERY,

HEALTHCARE DATA ANALYTICS

Chandan K. Reddy and Charu C. Aggarwal

Vagelis Hristidis INTELLIGENT TECHNOLOGIES FOR WEB APPLICATIONS

INFORMATION DISCOVERY ON ELECTRONIC HEALTH RECORDS

Priti Srinivas Sajja and Rajendra Akerkar

AND TECHNIQUES Benjamin C. M. Fung, Ke Wang, Ada Wai-Chee Fu, and Philip S. Yu

INTRODUCTION TO PRIVACY-PRESERVING DATA PUBLISHING: CONCEPTS

KNOWLEDGE DISCOVERY FOR COUNTERTERRORISM AND

LAW ENFORCEMENT

David Skillicorn

Ioão Gama

MACHINE LEARNING AND KNOWLEDGE DISCOVERY FOR

ENGINEERING SYSTEMS HEALTH MANAGEMENT

KNOWLEDGE DISCOVERY FROM DATA STREAMS

Ashok N. Srivastava and Jiawei Han

MINING SOFTWARE SPECIFICATIONS: METHODOLOGIES AND APPLICATIONS

David Lo, Siau-Cheng Khoo, Jiawei Han, and Chao Liu MULTIMEDIA DATA MINING: A SYSTEMATIC INTRODUCTION TO

CONCEPTS AND THEORY

Zhongfei Zhang and Ruofei Zhang

WAY	TOTO	TAL	T A B M	TRATES	T
D. / I		1 1 /	ГА М		

Tao Li, Mitsunori Ogihara, and George Tzanetakis

NEXT GENERATION OF DATA MINING

Hillol Kargupta, Jiawei Han, Philip S. Yu, Rajeev Motwani, and Vipin Kumar

RAPIDMINER: DATA MINING USE CASES AND BUSINESS ANALYTICS

APPLICATIONS

Markus Hofmann and Ralf Klinkenberg

RELATIONAL DATA CLUSTERING: MODELS, ALGORITHMS,

AND APPLICATIONS

Bo Long, Zhongfei Zhang, and Philip S. Yu

SERVICE-ORIENTED DISTRIBUTED KNOWLEDGE DISCOVERY

Domenico Talia and Paolo Trunfio

SPECTRAL FEATURE SELECTION FOR DATA MINING

Zheng Alan Zhao and Huan Liu

STATISTICAL DATA MINING USING SAS APPLICATIONS, SECOND EDITION

George Fernandez

SUPPORT VECTOR MACHINES: OPTIMIZATION BASED THEORY,

ALGORITHMS, AND EXTENSIONS

Naiyang Deng, Yingjie Tian, and Chunhua Zhang

TEMPORAL DATA MINING

Theophano Mitsa

TEXT MINING: CLASSIFICATION, CLUSTERING, AND APPLICATIONS

Ashok N. Srivastava and Mehran Sahami

THE TOP TEN ALGORITHMS IN DATA MINING

Xindong Wu and Vipin Kumar

UNDERSTANDING COMPLEX DATASETS: DATA MINING WITH MATRIX

DECOMPOSITIONS

David Skillicorn

To the School of Computing and Information Sciences (SCIS) at Florida International University (FIU) and

To the School of Computer Science at Nanjing University of Posts and Telecommunications (NJUPT)

Preface

Many systems, from computing systems, physical systems, business systems, to social systems, are only observable indirectly from the events they emit. Events can be defined as real-world occurrences and they typically involve changes of system states. Events are naturally temporal and are often stored as logs, e.g., business transaction logs, stock trading logs, sensor logs, computer system logs, HTTP requests, database queries, network traffic data, etc. These events capture system states and activities over time. For effective system management, a system needs to automatically monitor, characterize, and understand its behavior and dynamics, mine events to uncover useful patterns, and acquire the needed knowledge from historical log/event data.

Event mining is a series of techniques for automatically and efficiently extracting valuable knowledge from historical event/log data and plays an important role in system management. The purpose of this book is to present a variety of event mining approaches and applications with a focus on computing system management. It is mainly intended for researchers, practitioners, and graduate students who are interested in learning about the state of the art in event mining. It can also serve as a textbook for advanced courses. Learning about event mining is challenging as it is an inter-disciplinary field that requires familiarity with several research areas and the relevant literature is scattered in a variety of publication venues such as the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM SIGKDD), IEEE International Conference in Data Mining (IEEE ICDM), IEEE/IFIP Network Operations and Management Symposium (NOMS), International Conference on Network and Service Management (CNSM), and IFIP/IEEE Symposium on Integrated Network and Service Management (IM). We hope that this book will make the field easier to approach by providing a good starting point for readers not familiar with the topic as well as a comprehensive reference for those working in the field.

Although the chapters of the book are mostly self-contained and can be read in any order, they have been grouped and ordered in a way that can provide a structured introduction to the topic. In particular, after Chapter 1 (Introduction), the book is organized as follows:

Part I: Event Generation and System Monitoring

- Chapter 2: Event Generation: From Logs to Events
- Chapter 3: Optimizing System Monitoring Configurations

Preface

Part II: Event Pattern Discovery and Summarization

- Chapter 4: Event Pattern Mining
- Chapter 5: Mining Time Lags
- Chapter 6: Log Event Summarization

Part III: Applications

- Chapter 7: Data-Driven Applications in System Management
- Chapter 8: Social Media Event Summarization Using Twitter Streams

I would like to thank Dr. Sheng Ma, Dr. Charles Perng, Dr. Larisa Shwartz, and Dr. Genady Grabarnik for their long-term research collaboration on event mining. The research studies presented in the book are based on the research projects conducted at the Knowledge Discovery Research Group (KDRG) in the School of Computing and Information Sciences (SCIS) at Florida International University (FIU). The research projects have been partially supported by the National Science Foundation (NSF)(NSF CAREER Award IIS-0546280, CCF-0830659, HRD-0833093, DMS-0915110, CNS-1126619, and IIS-1213026), the U.S. Department of Homeland Security under grant award number 2010-ST-062-00039, the Army Research Office under grant number W911NF-10-1-0366 and W911NF-12-1-0431, a 2005 IBM Shared University Research (SUR) Award, and IBM Faculty Research Awards (2005, 2007, and 2008). The research projects have also been supported by Florida International University (FIU), Naniing University of Posts and Telecommunications (NJUPT), Xiamen University (XMU), Nanjing University of Science and Technology (NJUST), and Xiamen University of Technology (XMUT).

Editing a book takes a lot of effort. I would like to thank the following members of the Knowledge Discovery Research Group (KDRG) in the School of Computing and Information Sciences (SCIS) at Florida International University (FIU) for the contributions of their chapters as well as their help in reviewing and proofreading:

- Dr. Yexi Jiang (now works at Facebook Inc.)
- Dr. Chao Shen (now works at Amazon Inc.)
- Dr. Liang Tang (now works at LinkedIn Inc.)
- Chunqiu Zeng
- Wubai Zhou

I would also like to thank the KDRG group members (Wei Liu, Ming Ni, Bin Xia, Jian Xu, Wei Xue, and Longhui Zhang) for proofreading the book and for their valuable suggestions and comments. I would also like to thank the people at Chapman & Hall/Taylor & Francis for their help and encouragement.

List of Figures

1.1	The architecture of an integrated data-driven system management framework. (See color insert.)	2
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9	Event timeline for the FileZilla log example	15 19 20 20 22 25 31 40 41
2.10	Varying parameter λ'	45
3.1	Relationship of monitoring software, administrators, and customer servers	50 52
3.3	False positive alert duration	54
3.4 3.5	Flowchart for ticket creation	55 58
3.6 3.7	Flow chart of classification model	60 62
3.8 3.9	Postponed real tickets	62 63
3.10	Accuracy of situation discovery for file system space alert.	64
3.11	Accuracy of situation discovery for disk space alert	64
3.12 3.13	Accuracy of situation discovery for service not available Accuracy of situation discovery for router/switch down	65 65
4.1 4.2 4.3 4.4 4.5	Temporal data in system management. (See color insert.) Social events in social media. (See color insert.) A sequential pattern example Event sequences are illustrated with timestamps Steps of p-pattern discovery	72 73 74 84 87

4.0	1-patterns are qualified by a statistical hypothesis test. (See	
	color insert.)	93
4.7	Episodes of event sequences	96
4.8	There are three types of episodes: (a) parallel episode; (b) se-	
	rial episode; (c) composite episode. The vertical box indicates	
	that all the event types in the box happen in a single episode,	
	but the order of events does not matter. The arrow means the	
	order of events.	97
4.9	Two states q_0 and q_1 correspond to the states with a low	
1.0	rate and a high rate, respectively. p denotes the probability of	
	state change. The events generated in both states q_0 and q_1	
	are mixed into an event sequence	99
4.10		99
4.10	transformed to searching for the frequent patterns preceding	
	event F. (See color insert.)	101
4.11		101
4.11	tem events are identified when starting different types of tasks	
	such as disk intensive task and CPU intensive task	103
4.12		100
4.12	time window size before the occurrence of an event, while the	
	rear sub-series is a snippet of time series with the same fixed	104
1.10	time window size after the occurrence of the event	104
4.13		
	(-80.27,25.757228) is the location of Florida International Uni-	100
L Arang	versity	106
4.14	The MapQL query result on real property data is displayed	107
a arec	on the map.	107
4.15	W.	108
4.16		110
1.49	street WHERE name LIKE 'sw 8th';"	112
4.17		113
4.18		114
4.19		115
4.20		116
4.21	The workflow of searching for house properties with a good	
	appreciation potential. All the sub-tasks in the workflow are	
	scheduled by FIU-Miner and are executed in the distributed	
1 22	environment	117
4.22	German Contraction of the contra	
	sert.)	118
4.23		118
4.24	the manufacture of the state of	
	name of the street.	119
4.25	Final analysis results. (See color insert.)	119

6.13	Before pruning, the histogram graph contains 17 vertices and 136 edges; after pruning, the histogram graph contains only 6	
	vertices and 14 edges	177
6.14	An example summarization result for the security log	178
6.15	Summarization workflows of example scenarios	181
6.16	Converting the original event sequence to the vectors	182
6.17	Relationship between vector and ST	184
6.18	Summarizing with META	190
7.1	Problem detection, determination, and resolution. (See color	
	insert.)	198
7.2	An example of LSH-DOC	203
7.3	An example of LSH-SEP	204
7.4	An example of $l < Q $	204
7.5	Dissimilar events in segments	209
7.6	Random sequence mask	210
7.7	Average search cost curve $(n = 100K, \mathcal{Z}_{H,S} = 16, \theta =$	
	$0.5, Q = 10, \delta = 0.8, k = 2$)	213
7.8	RecallRatio comparison for ThunderBird log	216
7.9	RecallRatio comparison for Apache log	217
7.10	Number of probed candidates for ThunderBird log	218
7.11	Number of probed candidates for Apache log	219
7.12	RecallRatio for TG1	219
7.13	Varying m	220
7.14	Varying r	220
7.15	Peak memory cost for ThunderBird log	221
7.16	Peak memory cost for Apache log	221
7.17	Indexing time for ThunderBird log	222
7.18	Indexing time for Apache log	222
7.19	A hierarchical multi-label classification problem in the IT en-	
	vironment. A ticket instance is shown in (a). (b) The ground	
	truth for the ticket with multiple class labels. (c), (d), (e),	
	and (f) Four cases with misclassification. Assuming the cost	
	of each wrong class label is 1, Zero-one loss, Hamming loss,	
	H-loss, HMC-loss are given for misclassification. Notably, to	
	calculate the HMC-loss, the cost weights for FN and FP are	
	a and b respectively. The misclassified nodes are marked with	
	a red square. The contextual misclassification information is	
	indicated by the green rectangle	224
7.20	Four cases of contextual misclassification are shown in (a-d)	
	for node i . Here the left pair is the ground truth; the right pair	
	is the prediction. The misclassified nodes are marked with a	
	red square	226

7	.21	Figure illustrates a hierarchy with nine nodes and the steps of	
		algorithm 6. Nodes labeled positive are green. A dotted ellipse	
		marks a super node composed of the nodes in it	231
7	.22	Experiments involving tickets	233
7	.23	Numbers of tickets and distinct resolutions	237
7	.24	Top repeated resolutions for event tickets	237
7	.25	Test results for $K = 10, k = 3$	246
7	.26	Test results for $K = 20, k = 5, \ldots, \ldots$	246
7	.27	Average penalty for varying K and k	247
7	.28	Weighted accuracy by varying $k, K = 10. \dots \dots$	248
7	.29	Average penalty by varying $k, K = 10. \dots \dots$	248
7	.30	Overall score by varying $k, K = 10$	249
7	.31	Overall score for varying K and k ,	249
7	.32	Accuracy varies for different <i>numTopics</i> for dataset account4.	252
7	.33	Test results for three accounts by varying k for $K = 8$	252
7	.34	Test results for three accounts by varying k for $K = 16$	253
7	.35	Similarity measure before and after metric learning for a train-	
		ing set. (See color insert.)	253
7	.36	Similarity measure before and after metric learning for a test-	
		ing set. (See color insert.)	254
7	.37	Mean average precision (MAP) varying parameter K of the	
		underlying KNN algorithm	254
8	.1	Plate notation of the mixture model	268
8	.2	Precision of participant detection performance on phrase level.	276
8	.3	Recall of participant detection performance on phrase level.	277
8	.4	Precision of participant detection performance on participant	
		level	277
8	.5	Recall of participant detection performance on participant	
		level	277
8	.6	Sub-event detection performance of different methods without	
		participant detection	278
8	.7	Sub-event detection performance of different methods with	
		participant detection	278
8	.8	Participant detection performance on phrase level	280

List of Tables

2.1		An example of FileZilla's log
2.2		Summary of the three types of approaches
2.3		Experimental machines
2.4		Log data summary
2.5		Summary of comparative methods
2.6		F-Measures of K -Medoids
2.7		F-Measures of Single-Linkage
2.8		Parameter settings
2.9		Example of match score
2.1	0	Example of two message groups
2.1	1	Experimental machine
2.1		Summary of collected system logs 41
2.1		Summary of comparative algorithms
2.1		Summary of small log data
2.1		Average F-measure comparison
2.1		Discovered message signatures
3.1		Definitions for alert, event, and ticket
3.2		Domain word examples
3.3		Data summary
3.4		Sampled rules for Account 2 with testing data ratio = 0.3 . 63
3.5		Accuracy of the word-match method
4.1		An example of a sequence database
4.2		Candidate generation in GSP
4.3		Example for SPADE
4.4		An example of the FreeSpan algorithm
4.5		Projected database of $\langle a \rangle$ in PrefixSpan 80
4.6		An example to illustrate m-patterns 89
4.7		Summary of mining event patterns
4.8		A snippet of MapQL logs
5.1		Temporal patterns with time lag
5.2		Parameters for synthetic data generation
5.3		Experimental results on synthetic datasets
5.4		Snippet of discovered time lags

List of Tables

6.6	Real event dataset	145
6.1	Distinction between event pattern mining and event summa-	
	rization	154
6.2	Experiments with real Windows event log datasets (results are	
	obtained from [119])	163
6.3	Occurrences of event types E_a and E_b	169
6.4	Experimental evaluation results	178
6.5	A brief summary of the event summarization methods	179
6.6	Notations of basic operations	188
7.1	Definitions for alert, event, and ticket	199
7.2	An example of a hash value table	205
7.3	Hash value sequence $h_i(S)$	206
7.4	Sorted suffixes of $h_i(S)$	208
7.5	Experimental machine	214
7.6	Testing query groups	214
7.7	Number of true results	215
7.8	"SuffixMatrix(Strict)" for TG1	217
7.9	Special cases of CH-loss	228
7.10	Comparison with the "Flat" classification	235
7.11	Data summary	236
7.12	Notations	238
7.13	Event attribute types	238
7.14	Tickets for explaining motivation of incorporating resolution	
	information	243
7.15	First six words are extracted to represent topics trained from	
	LDA	243
7.16	Three resolution types with the event description they resolved .	251
8.1	Statistics of the datasets, including five NBA basketball games	
	and the WWDC 2012 conference event	272
8.2	Example participants for the NBA game Spurs vs Okc (2012-	
0.0	5-31) and the WWDC'12 conference	273
8.3	An example clip of the play-by-play of an NBA game (heatv-	
0 1	sokc)	274
8.4	An example clip of the live updates of WWDC 2012	275
8.5	Summary of comparative algorithms	279
8.6	F-1 score of ROUGE-2 of event summarization using different	000
	sub-event detection methods	280