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Non multa, sed multum






Preface

- What would be the best textbook for a brief, rapid, first and core introduction
into partial differential equations (PDEs)?

- How to select and organize materials for a new textbook in PDEs, to offer not
just first elements in this complex field, but also some opening toward further
study, theoretical research, mathematical modeling, and applications?

The first question is explicitly or just implicitly put by oneself, by any young
person interested or just constrained to take contact with PDEs.

The second question should be addressed to oneself by any author interested to
produce a new introductory course in PDEs.

Answering to any of the two above questions is a very difficult task. There
are several excellent texts in PDEs, each of them with its own balance of classic-
modern, elementary-advanced, and theoretic-applicability. Here are some of them:
Barbu [2], Bers—John—Schechter [4], Brezis [5], Courant—Hilbert [8], DiBene-
detto [10], Egorov—Shubin [11], Evans [12], Folland [13], Friedman [14], Garabe-
dian [15], John [19], Jost [20], Logan [25], Mihlin [26], Mikhailov [27], Mizohata
[28], Nirenberg [32], Petrovsky [35], Rauch [41], Schwartz [45], Shimakura [46],
Sobolev [49], Tikhonov—Samarskii [53], and Vladimirov [54].

Writing this book, I had in mind the above questions. The result is a book in
three parts which is intended to conform to the Latin phrase “Non multa, sed mul-
tum” (“not many, but much”, “not quantity, but quality”). In Part I, the reader
finds an accessible, elementary introduction to linear PDEs, in the framework of
classical analysis, without using the notion of distribution. However, I have con-
sidered useful in introducing, in this first part, the notion of generalized or weak
solution of a boundary value problem. Weak solutions are sought in larger spaces
than the common spaces of continuously differentiable functions, which are here
introduced more naturally, by the completion with respect to the corresponding
energetic norms. Part I can be used for a first standard one-semester course in
PDEs for mathematics students.

Part 11 addresses to students who follow a second partial differential equations
course. Here, distributions and many more results on Sobolev spaces (some of
them with laborious proofs, optional for a first reading) are presented and used for



Notation

L?(0,T; X)

D(2)

€ (£2)
D' (£2)
&' ()
8/

Ll (2)

H™ ($2)

Hy" (£2)
H™™ (£2)

Space of measurable functions u : [0, 7] — X with

1
ulzrorn = (T G dr) " <o
= C(‘)"’ (£2), the space of infinitely differentiable func-
tions on §2 with compact support included in 2
= C>(R2)
Space of all distributions on £2 (dual of D (£2))
Space of distributions with compact support
Space of temperated distributions
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Classical Theory






Chapter 1

Preliminaries

1.1 Basic Differential Operators

(a) Partial derivative operator D”. Let £2 C R" be an open setand let @ € N",
a = (a1, aa, ..., &) be a multi-index. We denote |a| = Z;?:l a; and we
define the operator

alely

DY :Ccll () Cc(2), D*u = ,
(@) ~c) Ix 9x%

which associates to function u its partial derivative of order |«|, of «; times
with respect to xj, ap times with respect to xz, ..., oy times with respect to
x".

For example, if a; =0 for j # k and o = I, then D% = axg - Also, if

aj =0 for j #k and ap =2, then D% = i

- Bx,%'
ad

In general, D® can be obtained by the composition of the operators 7,
!

Jj =12, .. n, namely

a o] a [+5) a an
@ R -
b ‘(axl) (3x2) (axn) '

Equation
D% = f
is the simplest partial differential equation of order || .
(b) Gradient.
ou Ju ou
v:Cc'(R C($2;:R"), Vu=|—, —, ..., — ).
( )_) ( ) " (axl 3)(2 Bx,,)

(c) Divergence.

n
div: C' (2:R") > C(2), divv=)_
j=1

i
ox;’

where v = (v, Va2, ..., Vp).



4 Chapter 1 Preliminaries

(d) Laplace’s operator (Laplacian). Laplace’s operator, or the Laplacian is de-
fined as divergence of the gradient, i.e.

n

92u

A:C*(R2 C(2), Au=divVu = .
(£2) > C (R2) u iv Vu Zax}

Jj=1

Equation
Au=f

is called Poisson’s equation, and its particular case

Au=0
is named Laplace’s equation. Any solution u € C?(£2) of Laplace’s equation
is said to be an harmonic function in 2.

(e) Directional derivative operator. Let v € R”, [u| = 1 be a unit vector
(versor of one direction in R™). We define the directional derivative operator as

@ c@. Pw=muw. v.
v av

It is easy to show that

u((x+1tv) —u(x)

9
% (x) = lim

for every x € §2.
t—>0+

The number g% (x) is called the derivative of u in the direction v at x.

An important role is played by the so-called normal derivative, that is, deriva-
tive in the gi/re:\cgc%rg@giféolthgggnal) to the hypersurface 92, the boundary
of £2. To speak about the normal to 952 at one of its points, it is necessary that
£2 be “smooth" in the sense that we are going to precise.

Let k € N\ {0} . We say that an open set 2 C R" is of class Ck if for each

point x¢ € 452, there exists r > 0 and a function ¢ € C* (B, (x0):R) such
that

Ve (x) #0 forevery x € B, (x9),
2N B, (x9) ={x € By (x0) : ¢(x) <0},
(R™\ 2) N By (x0) = {x € Br (x0) : ¢ (x) > 0}.

The set £2 is of class C®, ifitisof class CK forevery k € N\ {0}.
If 2 isofclass C!, then the vector

") = R i

Vo (x)



