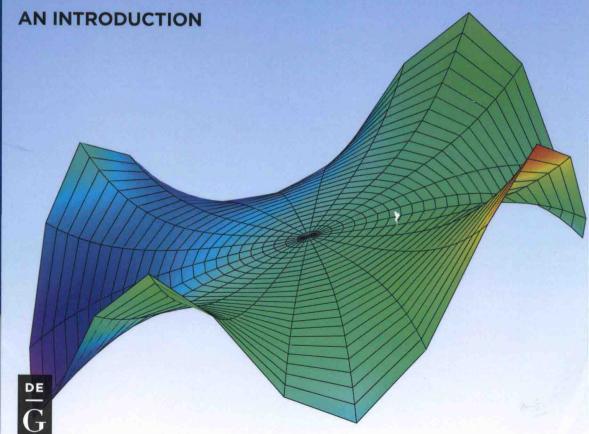
**DE GRUYTER** 

**TEXTBOOK** 

Radu Precup

# LINEAR AND SEMILINEAR PARTIAL DIFFERENTIAL EQUATIONS



### Radu Precup

## Linear and Semilinear Partial Differential Equations

An Introduction



De Gruyter

Mathematics Subject Classification 2010: 35-01, 35J, 35K, 35L, 35B, 35C, 35D, 47H, 47J.

ISBN 978-3-11-026904-8 e-ISBN 978-3-11-026905-5

Library of Congress Cataloging-in-Publication Data

A CIP catalog record for this book has been applied for at the Library of Congress.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.dnb.de.

© 2013 Walter de Gruyter GmbH, Berlin/Boston Printing and binding: Hubert & Co. GmbH & Co. KG, Göttingen ∞ Printed on acid-free paper

Printed in Germany www.degruyter.com



Precup · Linear and Semilinear Partial Differential Equations

试读结束: 需要全本请在线购买: www.ertongbook.com

Non multa, sed multum

### **Preface**

- What would be the best textbook for a brief, rapid, first and core introduction into partial differential equations (PDEs)?
- How to select and organize materials for a new textbook in PDEs, to offer not just first elements in this complex field, but also some opening toward further study, theoretical research, mathematical modeling, and applications?

The first question is explicitly or just implicitly put by oneself, by any young person interested or just constrained to take contact with PDEs.

The second question should be addressed to oneself by any author interested to produce a new introductory course in PDEs.

Answering to any of the two above questions is a very difficult task. There are several excellent texts in PDEs, each of them with its own balance of classic-modern, elementary-advanced, and theoretic-applicability. Here are some of them: Barbu [2], Bers–John–Schechter [4], Brezis [5], Courant–Hilbert [8], DiBenedetto [10], Egorov–Shubin [11], Evans [12], Folland [13], Friedman [14], Garabedian [15], John [19], Jost [20], Logan [25], Mihlin [26], Mikhailov [27], Mizohata [28], Nirenberg [32], Petrovsky [35], Rauch [41], Schwartz [45], Shimakura [46], Sobolev [49], Tikhonov–Samarskii [53], and Vladimirov [54].

Writing this book, I had in mind the above questions. The result is a book in three parts which is intended to conform to the Latin phrase "Non multa, sed multum" ("not many, but much", "not quantity, but quality"). In Part I, the reader finds an accessible, elementary introduction to linear PDEs, in the framework of classical analysis, without using the notion of distribution. However, I have considered useful in introducing, in this first part, the notion of generalized or weak solution of a boundary value problem. Weak solutions are sought in larger spaces than the common spaces of continuously differentiable functions, which are here introduced more naturally, by the completion with respect to the corresponding energetic norms. Part I can be used for a first standard one-semester course in PDEs for mathematics students.

Part II addresses to students who follow a second partial differential equations course. Here, distributions and many more results on Sobolev spaces (some of them with laborious proofs, optional for a first reading) are presented and used for

Notation

$$L^{p}\left(0,T;X\right) \qquad \text{Space of measurable functions } u:\left[0,T\right] \to X \text{ with } \\ \left|u\right|_{L^{p}\left(0,T;X\right)}:=\left(\int_{0}^{T}\left|u\left(t\right)\right|_{X}^{p}dt\right)^{1/p} < \infty \\ \mathcal{D}\left(\Omega\right) \qquad = C_{0}^{\infty}\left(\Omega\right), \text{ the space of infinitely differentiable functions on } \Omega \text{ with compact support included in } \Omega \\ \mathcal{E}\left(\Omega\right) \qquad = C^{\infty}\left(\Omega\right) \\ \mathcal{D}'\left(\Omega\right) \qquad \text{Space of all distributions on } \Omega \text{ (dual of } \mathcal{D}\left(\Omega\right)) \\ \mathcal{E}'\left(\Omega\right) \qquad \text{Space of distributions with compact support } \mathcal{S}' \\ \mathcal{S} \text{pace of temperated distributions } u \text{ on } \Omega \text{ with } u \in L^{1}\left(\Omega'\right) \text{ for every bounded open } \Omega' \text{ with } \overline{\Omega'} \subset \Omega \\ \mathcal{H}^{m}\left(\Omega\right) \qquad = \left\{u \in L^{2}\left(\Omega\right): \ D^{\alpha}u \in L^{2}\left(\Omega\right) \text{ for all } |\alpha| \leq m\right\} \\ \left(u,v\right)_{H^{m}} = \sum_{|\alpha| \leq m} \left(D^{\alpha}u,D^{\alpha}v\right)_{L^{2}}; \ |u|_{H^{m}} = \left(u,u\right)_{H^{m}}^{1/2} \\ \mathcal{H}^{m}_{0}\left(\Omega\right) \qquad \text{Closure of } C_{0}^{\infty}\left(\Omega\right) \text{ in } H^{m}\left(\Omega\right) \\ \mathcal{H}^{-m}\left(\Omega\right) \qquad \text{Dual of } H_{0}^{m}\left(\Omega\right) \\ \end{array}$$

### **Contents**

| Pr | eface   |                                                                | vii |
|----|---------|----------------------------------------------------------------|-----|
| No | otation | l                                                              | ix  |
| I  | Clas    | ssical Theory                                                  |     |
| 1  | Preli   | iminaries                                                      | 3   |
|    | 1.1     | Basic Differential Operators                                   | 3   |
|    | 1.2     | Linear and Quasilinear Partial Differential Equations          | 5   |
|    | 1.3     | Solutions of Some Particular Equations                         | 8   |
|    | 1.4     | Boundary Value Problems                                        | 10  |
|    |         | 1.4.1 Boundary Value Problems for Poisson's Equation           | 10  |
|    |         | 1.4.2 Boundary Value Problems for the Heat Equation            | 11  |
|    |         | 1.4.3 Boundary Value Problems for the Wave Equation            | 12  |
| 2  | Parti   | al Differential Equations and Mathematical Modeling            | 13  |
|    | 2.1     | Conservation Laws: Continuity Equations                        | 13  |
|    | 2.2     | Reaction-Diffusion Systems                                     | 16  |
|    | 2.3     | The One-Dimensional Wave Equation                              | 17  |
|    | 2.4     | Other Equations in Mathematical Physics                        | 18  |
| 3  | Ellipt  | tic Boundary Value Problems                                    | 21  |
|    | 3.1     | Green's Formulas                                               | 21  |
|    | 3.2     | The Fundamental Solution of Laplace's Equation                 | 22  |
|    | 3.3     | Mean Value Theorems for Harmonic Functions                     | 25  |
|    | 3.4     | The Maximum Principle                                          | 26  |
|    | 3.5     | Uniqueness and Continuous Dependence on Data for the Dirichlet |     |
|    |         | Problem                                                        | 29  |
|    | 3.6     | Green's Function of the Dirichlet Problem                      | 30  |
|    | 3.7     | Poisson's Formula                                              | 31  |
|    | 3.8     | Dirichlet's Principle                                          | 34  |

xii Contents

|    | 3.9   | The Generalized Solution of the Dirichlet Problem           | 37         |
|----|-------|-------------------------------------------------------------|------------|
|    | 3.10  | Abstract Fourier Series                                     | 42         |
|    | 3.11  | The Eigenvalues and Eigenfunctions of the Dirichlet Problem | 45         |
|    | 3.12  | The Case of Elliptic Equations in Divergence Form           | 50         |
|    | 3.13  | The Generalized Solution of the Neumann Problem             | 51         |
|    | 3.14  | Complements                                                 | 55         |
|    |       | 3.14.1 Harnack's Inequality                                 | 55         |
|    |       | 3.14.2 Hopf's Maximum Principle                             | 57<br>59   |
|    |       | 3.14.4 Perron's Method                                      | 62         |
|    |       | 3.14.5 Layer Potentials                                     | 68         |
|    |       | 3.14.6 Fredholm's Method of Integral Equations              | 70         |
|    | 3.15  | Problems                                                    | 71         |
| 4  | Mixe  | d Problems for Evolution Equations                          | 87         |
|    | 4.1   | The Maximum Principle for the Heat Equation                 | 87         |
|    | 4.2   | Vector-Valued Functions                                     | 90         |
|    | 4.3   | The Cauchy–Dirichlet Problem for the Heat Equation          | 91         |
|    | 4.4   | The Cauchy–Dirichlet Problem for the Wave Equation          | 99         |
|    | 4.5   | Problems                                                    | 102        |
| 5  | The ( | Cauchy Problem for Evolution Equations                      | 109        |
|    | 5.1   | The Fourier Transform                                       | 109        |
|    |       | 5.1.1 The Fourier Transform on $L^1(\mathbf{R}^n)$          | 109        |
|    |       | 5.1.2 Fourier Transform and Convolution                     | 110<br>112 |
|    | 5.2   | The Cauchy Problem for the Heat Equation                    | 116        |
|    | 5.3   | The Cauchy Problem for the Wave Equation                    | 119        |
|    | 5.4   | Nonhomogeneous Equations: Duhamel's Principle               | 123        |
|    | 5.5   | Problems                                                    | 125        |
|    |       |                                                             |            |
| II | Mo    | dern Theory                                                 |            |
|    |       | ibutions                                                    | 131        |
| U  | 6.1   | The Fundamental Spaces of the Theory of Distributions       | 131        |
|    | 6.2   | Distributions: Examples; Operations with Distributions      | 131        |
|    | 0.2   | Distributions. Examples, Operations with Distributions      | 133        |

Contents xiii

|   |       | 6.2.1 Regular Distributions                                 | 133        |
|---|-------|-------------------------------------------------------------|------------|
|   |       | 6.2.2 The Dirac Distribution                                | 134        |
|   |       | 6.2.3 Differentiation                                       | 134        |
|   |       | <ul><li>6.2.4 Multiplication by a Smooth Function</li></ul> | 136<br>137 |
|   |       | 6.2.6 Convolution                                           | 137        |
|   |       | 6.2.7 Distributions of Compact Support                      | 139        |
|   |       | 6.2.8 Weyl's Lemma                                          | 142        |
|   | 6.3   | The Fourier Transform of Tempered Distributions             | 142        |
|   |       | 6.3.1 The Fourier Transform on $\mathcal{S}'(\mathbf{R}^n)$ | 143        |
|   |       | 6.3.2 The Fourier Transform on $L^2(\mathbf{R}^n)$          | 144        |
|   |       | 6.3.3 Convolution in 8'                                     | 144        |
| _ | 6.4   | Problems                                                    | 145        |
| 7 |       | lev Spaces                                                  | 149        |
|   | 7.1   | The Sobolev Spaces $H^m(\Omega)$                            | 149        |
|   | 7.2   | The Extension Operator                                      | 152        |
|   | 7.3   | The Sobolev Spaces $H_0^m(\Omega)$                          | 156        |
|   | 7.4   | Sobolev's Continuous Embedding Theorem                      | 159        |
|   | 7.5   | Rellich-Kondrachov's Compact Embedding Theorem              | 163        |
|   | 7.6   | The Embedding of $H^m(\Omega)$ into $C(\overline{\Omega})$  | 165        |
|   | 7.7   | The Sobolev Space $H^{-m}(\Omega)$                          | 167        |
|   | 7.8   | Fourier Series in $H^{-1}(\Omega)$                          | 172        |
|   | 7.9   | Generalized Solutions of the Cauchy Problems                | 175        |
| 8 | The V | Variational Theory of Elliptic Boundary Value Problems      | 180        |
|   | 8.1   | The Variational Method for the Dirichlet Problem            | 180        |
|   | 8.2   | The Variational Method for the Neumann Problem              | 184        |
|   | 8.3   | Maximum Principles for Weak Solutions                       | 186        |
|   | 8.4   | Regularity of Weak Solutions                                | 191        |
|   | 8.5   | Regularity of Eigenfunctions                                | 198        |
|   | 8.6   | Problems                                                    | 201        |
| Ш | [ Se  | milinear Equations                                          |            |
| 9 |       | linear Elliptic Problems                                    | 208        |
|   |       | The Nemytskii Superposition Operator                        | 208        |

xiv Contents

|      | 9.2    | Application of Banach's Fixed Point Theorem           | 211 |
|------|--------|-------------------------------------------------------|-----|
|      | 9.3    | Application of Schauder's Fixed Point Theorem         | 213 |
|      | 9.4    | Application of the Leray-Schauder Fixed Point Theorem | 215 |
|      | 9.5    | The Monotone Iterative Method                         | 218 |
|      | 9.6    | The Critical Point Method                             | 220 |
|      | 9.7    | Problems                                              | 225 |
| 10   | The    | Semilinear Heat Equation                              | 227 |
|      | 10.1   | The Nonhomogeneous Heat Equation in $H^{-1}(\Omega)$  | 227 |
|      |        | Regularity Results                                    | 233 |
|      | 10.3   | Application of Banach's Fixed Point Theorem           | 238 |
|      | 10.4   | Application of Schauder's Fixed Point Theorem         | 241 |
|      | 10.5   | Application of the Leray-Schauder Fixed Point Theorem | 245 |
| 11   | The    | Semilinear Wave Equation                              | 248 |
|      | 11.1   | The Nonhomogeneous Wave Equation in $H^{-1}(\Omega)$  | 248 |
|      | 11.2   | Application of Banach's Fixed Point Theorem           | 252 |
|      | 11.3   | Application of the Leray-Schauder Fixed Point Theorem | 257 |
| 12   | Sem    | ilinear Schrödinger Equations                         | 262 |
|      | 12.1   | The Nonhomogeneous Schrödinger Equation               | 262 |
|      | 12.2   | Properties of the Schrödinger Solution Operator       | 266 |
|      | 12.3   | Applications of Banach's Fixed Point Theorem          | 268 |
|      |        | Applications of Schauder's Fixed Point Theorem        | 272 |
|      |        | **                                                    |     |
| Bib  | liogra | aphy                                                  | 275 |
| Inde | ex     |                                                       | 278 |

# Part I Classical Theory

### Chapter 1

### **Preliminaries**

### 1.1 Basic Differential Operators

(a) Partial derivative operator  $D^{\alpha}$ . Let  $\Omega \subset \mathbf{R}^n$  be an open set and let  $\alpha \in \mathbf{N}^n$ ,  $\alpha = (\alpha_1, \alpha_2, ..., \alpha_n)$  be a *multi-index*. We denote  $|\alpha| = \sum_{j=1}^n \alpha_j$  and we define the operator

$$D^{\alpha}: C^{|\alpha|}(\Omega) \to C(\Omega), \quad D^{\alpha}u = \frac{\partial^{|\alpha|}u}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \dots \partial x_n^{\alpha_n}},$$

which associates to function u its partial derivative of order  $|\alpha|$ , of  $\alpha_1$  times with respect to  $x_1$ ,  $\alpha_2$  times with respect to  $x_2$ , ...,  $\alpha_n$  times with respect to  $x_n$ .

For example, if  $\alpha_j = 0$  for  $j \neq k$  and  $\alpha_k = 1$ , then  $D^{\alpha} = \frac{\partial}{\partial x_k}$ . Also, if  $\alpha_j = 0$  for  $j \neq k$  and  $\alpha_k = 2$ , then  $D^{\alpha} = \frac{\partial^2}{\partial x_k^2}$ .

In general,  $D^{\alpha}$  can be obtained by the composition of the operators  $\frac{\partial}{\partial x_j}$ ,  $j=1,\ 2,\ ...,\ n$ , namely

$$D^{\alpha} = \left(\frac{\partial}{\partial x_1}\right)^{\alpha_1} \left(\frac{\partial}{\partial x_2}\right)^{\alpha_2} \dots \left(\frac{\partial}{\partial x_n}\right)^{\alpha_n}.$$

Equation

$$D^{\alpha}u = f$$

is the simplest partial differential equation of order  $|\alpha|$ .

(b) Gradient.

$$\nabla: C^1(\Omega) \to C(\Omega; \mathbf{R}^n), \quad \nabla u = \left(\frac{\partial u}{\partial x_1}, \frac{\partial u}{\partial x_2}, \dots, \frac{\partial u}{\partial x_n}\right).$$

(c) Divergence.

div: 
$$C^{1}(\Omega; \mathbf{R}^{n}) \to C(\Omega)$$
, div  $\mathbf{v} = \sum_{j=1}^{n} \frac{\partial \mathbf{v}_{j}}{\partial x_{j}}$ ,

where  $\mathbf{v} = (\mathbf{v}_1, \ \mathbf{v}_2, \ ..., \ \mathbf{v}_n)$ .

(d) Laplace's operator (Laplacian). Laplace's operator, or the Laplacian is defined as divergence of the gradient, i.e.

$$\Delta: C^{2}(\Omega) \to C(\Omega), \quad \Delta u = \text{div } \nabla u = \sum_{j=1}^{n} \frac{\partial^{2} u}{\partial x_{j}^{2}}.$$

Equation

$$\Delta u = f$$

is called Poisson's equation, and its particular case

$$\Delta u = 0$$

is named Laplace's equation. Any solution  $u \in C^2(\Omega)$  of Laplace's equation is said to be an harmonic function in  $\Omega$ .

(e) Directional derivative operator. Let  $v \in \mathbb{R}^n$ , |v| = 1 be a unit vector (versor of one direction in  $\mathbb{R}^n$ ). We define the directional derivative operator as

$$\frac{\partial}{\partial v}: C^{1}(\Omega) \to C(\Omega), \quad \frac{\partial u}{\partial v}(x) = (\nabla u(x), v).$$

It is easy to show that

$$\frac{\partial u}{\partial v}(x) = \lim_{t \to 0+} \frac{u(x+tv) - u(x)}{t} \quad \text{for every } x \in \Omega.$$

The number  $\frac{\partial u}{\partial v}(x)$  is called the *derivative of u in the direction v* at x.

An important role is played by the so-called *normal derivative*, that is, derivative in the direction normal (i.e. orthogonal) to the hypersurface  $\partial\Omega$ , the boundary of  $\Omega$ . To speak about the normal to  $\partial\Omega$  at one of its points, it is necessary that  $\Omega$  be "smooth" in the sense that we are going to precise.

Let  $k \in \mathbb{N} \setminus \{0\}$ . We say that an open set  $\Omega \subset \mathbb{R}^n$  is of class  $C^k$  if for each point  $x_0 \in \partial \Omega$ , there exists r > 0 and a function  $\varphi \in C^k(B_r(x_0); \mathbb{R})$  such that

$$\nabla \varphi(x) \neq 0 \quad \text{for every } x \in B_r(x_0),$$

$$\Omega \cap B_r(x_0) = \{ x \in B_r(x_0) : \varphi(x) < 0 \},$$

$$(\mathbf{R}^n \setminus \overline{\Omega}) \cap B_r(x_0) = \{ x \in B_r(x_0) : \varphi(x) > 0 \}.$$

The set  $\Omega$  is of class  $C^{\infty}$ , if it is of class  $C^k$  for every  $k \in \mathbb{N} \setminus \{0\}$ . If  $\Omega$  is of class  $C^1$ , then the vector

$$\nu\left(x\right) := \frac{1}{\left|\nabla\varphi\left(x\right)\right|} \nabla\varphi\left(x\right)$$