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NUMERICAL SOLUTION OF
HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS

This i1s a new type of graduate textbook. with both print and interactive electronic cor
ponents (on CD). It 1s a comprehensive presentation of modern shock-capturing methoc
including both finite volume and finite element methods. covering the theory ot hyperbol
conservation laws and the theory of the numerical methods.

Classical techniques for judging the quahitative performance of the schemes. such
modified equation analysis and Fourier analysis. are used to motivate the development
classical higher-order methods (the Lax—=Wendrott process) and to prove results such as tl
Lax Equivalence Theorem.

The range of applications (shallow water. compressible gas dynamics. magnetohydr
dynamics. finite detormation n solids. plasticity. polvmer flooding and water/gas mnjecti
in oil recovery) is broad enough to engage most engineering disciplines and many areas
applied mathematics.

The solution of the Riemann problems for these applications 1s developed. so that tl
reader can use the theory to develop test problems for the methods. especially to me
sure errors for comparisons ot accuracy and etficiency. The numerical methods mnvol
a variety of important approaches. such as MUSCL and PPM. TVD. wave propagatic
Lax—Friedrichs (aka central schemes). ENO and discontinuous Galerkin: all of these a
discussed ino  .d multiple spatial dimensions. Since many ot these methods depend «
Ricmann solvers. there is extensive discussion of the basic design principles of approxime
Riemann solvers. and several computationally usetul techniques. The final chapter contai
a discussion of aday e mesh refinement via structured grids.

The accompanying CD contains a hyperlinked version of the text which provides acce
to computer ~oaes for all of the text figures. Through this electronic text students can:

« See the codes and run them, choosing their own input parameters interactively
* View the online numerical results as movies

« Gain an appreciation for both the dynamics of the problem application. and the grow
of numerical errors

e Download and modity the code tor use with other applications

e Study the code to learn how to structure their programs for modularity and ease

debugging

JOHN A. TRANGENSTEIN 1s Protessor of Mathematics at Duke University. North Carolin
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Preface

Hyperbolic conservation laws describe a number of interesting physical probler
In diverse areas such as fluid dynamics. solid mechanics, and astrophysics. O
emphasis in this book 1s on nonlinearities in these problems, especially those tt
lead to the development of propagating discontinuities. These propagating discon
nuities can appear as the familiar shock waves in gases (the “boom™ from explosio
or super-sonic airplanes). but share many mathematical properties with other wav
that do not appear to be so “shocking™ (such as steep changes in oil saturations
petroleum reservoirs). These nonlinearities require special treatment, usually |
methods that are themselves nonlinear. Of course, the numerical methods in tt
book can be used to solve linear hyperbolic conservation laws. but our methods w
not be as fast or accurate as possible for these problems. If you are only interest

in /inear hyperbolic conservation laws, you should read about spectral methods a
multipole expansions.

This book grew out of a one-semester course | have taught at Duke Univers;
over the past decade. Quite frankly, it has taken me at least 10 years to develop t
material into a form that I like. I may tinker with the material more in the futu
because 1 expect that I will never be fully satisfied.

[ have designed this book to describe both numerical methods and their applic
tions. As aresult, [ have included substantial discussion about the analytical soluti
of hyperbolic conservation laws, as well as discussion about numerical methods.
this course, I have tried to cover the applications 1n such a way that the engineeri
students can see the mathematical structure that is common to all of these proble
areas. With this information. [ hope that they will be able to adapt new numeric
methods developed for other problem areas to their own applications. I try to get t
mathematics students to adopt one of the physical models for their computatio
during the semester. so that the numerical experiments can help them to devel
physical intuition.



XViii Preface

[ also tried to discuss a variety of numerical methods in this text. so th
could see a number of competing ideas. This book does not try to favi
particular numerical scheme, and it does not serve as a user manual to
package. It does have software available, to allow the reader to exper
the various 1deas. But the software 1s not designed for easy applicati
problems. Instead. I hope that the readers will learn enough from this bo
intelligent decisions on which scheme 1s best for their problems. as wel
implement that scheme etficiently.

There are a number of very good books on related topics. LeVeq
Volume Methods for Hyperbolic Problenis [97] 1s one that covers the m
well, describes several important numerical methods, but emphasize:
propagation scheme over all. Other books are specialized for particul:
areas, such as Hirsch's Numerical Computation of Internal and Extei
[73]. Peyret and Taylor’s Computational Methods for Fluid Flow [131]
Computational Fluid Dynamics [137] and Toro’s Riemann Solvers and

Methods for Fluid Dynamics [ 159]. These books contain very interesting
that are particular for fluid dynamics, and should not be ignored.
Because this text develops analytical solutions to several problems, it
to measure the errors in the numerical methods on interesting test pro
relates to a point I try to emphasize in teaching the course. that it is ¢
numerical computation to perform mesh refinement studies in order to
that the method 1s performing properly. Another topic in this text is that
methods can be compared for accuracy (error for a given mesh size) anc

(error for a given amount of computational time). Sometimes people hav
bias toward higher-order methods. but this may not be the most cos
approach tfor many problems. Efficiency is tricky to measure. because
gramming issues can drive up computational time. I do not claim to hav
the most efficient version of any of the schemes in this text. so the effici
parisons should be taken “with a grain of salt.”

The numerical comparisons produced some surprises for me. For
was surprised that approximate Riemann problem solvers often proc
numerical results in Godunov methods than “exact™ Riemann solver
surprise 1s that there is no clear best scheme or worst scheme in this tex
I have omitted discussions of schemes that have fallen out of favor in th
for good reasons). There are some schemes that generally work better
and some that often are less efficient than most. but all schemes have
in which they perform well. The journal literature, of course. is full o
of the latter behavior, since the authors get to choose computational ex:
benefit their method.
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During the past ten years. [ have watched numerical methods evolve, compute
gain amazing speed, and students struggle harder with programming. The evoli
tion of the methods led me to develop the course material into a form that studen
could access online. In that way. I could insert additional text for ready access b
the students. The speed of current desktop machines allows us to make some re;
sonably interesting computations during the semester, seeing in a few minutes wh
used to require overnight runs on supercomputers. During that time, however, tt
new operating systems have separated the students ever tarther from programmir
detals.

As I gained experience with online text generation, I started to ask 1f it woul
be possible to develop an interactive text. First, I wanted students to be able 1
view the example programs while they were reading the text online. Next, I wante
students to be able to examine links to information available on the web. Then,
decided that 1t would be really nice if students could pertorm “what it~ experimen
within the text. by running numerical methods with different parameters and seeir
the results immediately. Because I continue to think that only “real™ programmir
languages (i.e., C, C™" and Fortran) should be used for the material such as this.
rejected suggestions that I rewrite the programs in Matlab or Java. Eventually, o
department systems programmer, Andrew Schretter, found a way to make thing
work for me, provided that I arrange for all parameter entry through graphic
user interfaces. Our senior systems programmer. Yunliang Yu, did a lot of tl
development of the early form of the graphical user intertace. One of my form
oraduate students, Wenjun Ying, programmed carefully the many cases for tl
marching cubes algorithm for visualizing level surfaces in three dimensions. I a
oreatly indebted to Andrew., Wenjun and Yunliang for their help.

This text is being published in two forms: traditional paper copy and a PDF file ¢
a companion CD. The electronic form of the text contains links between equation
theorem references and the original statements. Similar links lead to bibhiograpl
citations or to occurrences of key words in the index. There are electronic linl
in the online text to source code and executables on the CD. This allows studen
to view computer implementations of the algorithms developed in the book, ar
to perform “what if 7 experiments with program and model parameters. Howeve
since the text i1s the same for both versions of the book. this means that the pap

text contains instructions to click on electronic links.

The graphical user interface (GUI) makes it easy for students to change parar
eters (and. in fact, to see all of the input parameters). The GUI also complicat
the online programs. There 1s a danger that students may think that they have
program GUIs in order to solve these problems. That 1s not my intent. I have pr
vided several example programs in the online version of chapter 2 to show studer



XX Preface

how they can write simple programs (that produce data sets for post p
or slightly more complex programs (that display numernical results durin
putation to look like movies). or very sophisticated programs (that use
input parameters). I would be happy it all students could program succ
the first style. After all. CLAWPACK is a very successful example of
and direct style of programming.

[t 1s common that students in this class are taking 1t in order to learn pro
in Fortran or C™ 7, as much as they want to learn about the numerical met|
of these languages have advantages and disadvantages. Fortran 1s very
arrays (subscripts can start at arbitrary values, which 1s useful for “gho
many methods) and has a very large set of intrinsic functions (for exal
and min with more than two arguments for slope limiters). Fortran |
good with memory allocation. or with pointers in general. [ use C™7 to |
memory allocation. and for all interactive graphics. including GUIs. W
select numerical methods through a GUI, then I set values for function pe
pass those as arguments to Fortran routines. I do not recommend sucl
for novice programmers. On the other hand, students who want to ex
programming skills can find several interesting techniques in the codes.

[ do try to emphasize defensive programming when I teach courses tl
scientific computing. By this term, I mean the use of programming pri
make 1t easier to prevent or identify programming errors. It 1s often
catch the use of uninitialized variables. the access of memory out of |
memory leaks. The mixed-language programs all use the following defer
First. floating-point traps are enabled in unoptimized code. Second. flo:
array values are initialized to IEEE infinity. Third. a memory debugger
memory allocation by overloading operator new in C77. When th
makes an allocation request. the memory debugger gets even more spac
heap. and puts special bit patterns into the space before and after the usern
a result, the programmer can ask the memory debugger to check individu
or all pointers tor writes out of bounds. This memory debugger is very fas
not add significantly to the overall memory requirements. The memon
also informs the programmer about memory leaks. providing informa
where the untreed pointer was allocated.

Unfortunately, mixing Fortran and C™" allows the possibility of tr
programming errors. For example, declaring a Fortran subroutine to ha
value in a C*" extern “C” block can lead to stack corruption. I d«
good detensive programming technique for that error.

But this book is really about numerical methods, not programming
nterested in hyperbolic conservation laws well after graduate school
indebted to several people for helping me to develop that interest. Joh



Preface X

Gregory Shubin were particularly helpful when we worked together at Exxo
Production Research. At Lawrence Livermore National Laboratory, [ learnt muc
about Godunov methods from both John Bell and Phil Colella, and about obje
ortented programming from Bill Crutchfield and Mike Welcome. I want to than
all of them for their kind assistance during our years together.

Finally. emotional support throughout a project of this sort i1s essential. T wai
to thank my wife. Becky. tor all her love and understanding throughout our yeai
together. I could not have written this book without her.
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