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Preface

The centrifuge has become one of the most basic laboratory instri.ments and
as such it is used by a wide range of laboratory personnel. Instri:..on is usual-
ly freely available for the actual operation of all centrifuges frciu, for exam-
ple, manufacturers’ manuals. However, while there are a number of advanced
treatises on centrifugation, these frequently only review varic: s aspects of the
subject and as such do not directly.relate to the laboratory use ~f the various
centrifugation techniques. This book is designed not only to detail the impor-
tant criteria for optimising centrigual separations but also each se.tion in-
cludes detailed protocols of experiments designed to illustrate the poiiit . made
in each section.

While this book has been written primarily for novices, established rc-carch
workers who already have some experience of centrifugation should t:d that
the text, which emphasises the advantages of using newer types of rc. »rs and
gradient media, a useful reference source for their work. In addi: on, the
general appendices at the end of the book provide a great deal of d: a which
are extremely useful for everyone working in the field of centrifug.tion.

PREFACE TO THE SECOND EDITION

The enormous success of the first edi.ion of this book emphasised the need for
a book stressing the practical aspects of centrifugation. This second edition
has a similar format to the first in providing extensive experimental details of
protocols for all types of centrifugal separations from macromolecules to
whole cells. It also describes the applications of centrifuges ranging from sim-
ple bench machines to analytical centrifuges. However, the opportunity has
been taken to revise the text extensively not only to bring it up to date but also
to expand its coverage to make it more comprehensive. The book has been
revised and extended not only as a guide to novices but also as a reference
source for experienced researchers. Finally, I would like to thank my many
colleagues, both those involved in academic research and those associated with
centrifuge manufacturers, for their helpful information which has enabled me
to assemble such a detailed and comprehensive book.
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CHAPTER 1

The Theory and Practice of Centrifugation

D. RICKWOOD

I. INTRODUCTION

The aim of this chapter is to introduce the reader to some of the basic concepts
in the area of centrifugation. The beginning of this chapter outlines the
theoretical bases of centrifugation to introduce the reader to the most impor-
tant parameters which are likely to be encountered. More rigorous and
mathematically detailed treatments of centrifugation theory can be found else-
where (1,2). The other parts of this chapter deal with the practical aspects of
centrifugation in terms of descriptions of centrifuges and rotors, as well as
describing the properties of the various gradient media used for centrifugal
separations.

2. THEORY OF CENTRIFUGATION
2.1 Sedimentation Theory

In a suspension of particles, the rate at which the particles sediment depends
not only on the nature of the particles but also on the nature of the medium in
which the particles are suspended as well as the force applied to the particles.
Intuitively, one would expect that larger particles shouid sediment more rapid-
ly than smaller ones. In fact, although biological particles vary enormously in
size from relatively small proteins to whole cells, the parameters affecting
sedimentation are the same irrespective of size. One important factor affecting
the sedimentation of particles is the viscosity of the medium. In 1856, Sir
Gabriel Stokes proposed that the frictional force, F, acting on a rigid spherical
particle of radius, r,, was related to the viscosity, n, by the equation:

F=+6nnrd Equation |
dt
where dr/dt is the velocity of the particle. As shown in Figure I the actual
force experienced by particles is determined not only by the gravitational
force, g, but also the flotation effects which reflect the differences in the densi-
ty of the medium (g,) and the particles (¢ ). Thus Equation 1 becomes:

(e, — o) V.€=6 mrpg-: Equation 2

Since the particle is assumed to be spherical, then the volume, V, can be ex-
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buoyancy
*
moleculur\ .~ interactions
P “~
sedimentation
(g)

Figure 1. Forces acting on particles in solution.

pressed in terms of the radius of the particle. Thus:

i7rrr,3(g‘,— o g = 67r17rp‘ir Equation 3
3 dt :

In practice, the centrifugal force which moves the particles away from the
axis of rotation is very much greater than the Earth’s gravitational field and so
we can express centrifugal force relative to the Earth’s gravitational field by
the expression:

centrifugal force = w?r
4
where r is the radial distance of the particle from the axis of rotation and w is
the angular'velocity in terms of radians/sec. Substituting this relationship into
Equation 4 and simplifying gives the expression in terms of the velocity of par-
ticles, namely:

Equation 4

. 2
dr _ 2rif(, — eww’r Equation 5

dt 9n
This expression is only true for spherical particles. Non-spherical particles
have larger frictional coefficients. In the case of rod-like molecules the fric-
tional coefficient of the molecule (f) can be as much as ten times that of the
frictional coefficient of a sphere (f,). To take this into account, Equation 5 can
be modified to give the expression:

dr _ 2rl (e, — onw’r Equation 6
dt EL s

Besides the buoyancy and sedimentation forces, the particles are also sub-
jected to molecular forces of the surrounding medium (see Figure 1). If the
particles are small then considerable centrifugal force is necessary to .
counteract these forces and sediment particles.

2.2 Non-ideality of Biological Particles

One factor that can complicate sedimentation studies is that a number of
biological particles have a dynamic nature. For example, proteins with a

2
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subunit structure (e.g., haemoglobin) may undergo dissociation during cen-
trifugation leading to the formation of multiple peaks. Another problem is
that sedimentation down the gradient may alter the properties of the particle.
As an example, the rate at which high molecular weight DNA -migrates
through a gradient depends on the relative centrifugal force, since higher cen-
trifugal forces appear to alter the conformation and hence the sedimentation
rate of the DNA (4).
The other feature of centrifugation is that the centrifugal force generates
hydrostatic pressure within the solution. The hydros!atic pressure generated
~can be sufficient to permeabilise membranes to gradient solutes (5), to
dissociate nucleoprotein complexes (6) and to disrupt protein complexes (3).
Hence, in choosing centrifugation conditions or in interpreting sedimentation
patterns, care must be taken to avoid conditions which may lead to the forma-
tion of artifacts.

2.3 Sedimentation Coefficients

From Equation 6, it can be seen that it is possible to define a particle in terms
of its behaviour in a centrifugal field, that is in terms of its sedimentation coef-
ficient, s, where:

s= dr/dt Equation 7
w?r

For most biological macromolecules the magnitude of s is about 10 ~* sec and
hence the unit of sedimentation, the Svedberg (S), has been defined as being
equal to 10~ 3 sec. The definition of sedimentation coefficients is discussed in
greater detail in Chapters 4 and 8. It is also important to realise that not only is
the relationship between the sedimentation coefficient of a particle and its
molecular weight not linear but also it varies from one type of particle to
another.

2.4 Practical Calculations of Centrifugal Force and Centrifugation Times

As shown in Equation 4, the relative centrifugal force (RCF) can be calculated
from the expression:

2 .
RCF =%F Equation 4
' g
It is inconvenient to measure the angular velocity, w, and so it is more conve-

nient to express the RCF in terms of revolutions per minute (r.p.m.), N, and
this gives the expression:

RCF = ll.lS x Y ’ Equation 8
1000

The centrifugal force is usually given in terms of ‘g’ and is written as such or as
‘xg’.

From Equation 8, it can be seen that the centrifugal force acting on the par-

“ticle is related to the square of the speed and hence doubling the speed in-

3
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creases the centrifugal force by a factor of four. The centrifugal force also in-
creases with the distance from the axis of rotation (r). Hence particles in a
homogeneous medium will accelerate as the radial distance increases, although
in sucrose gradients, where there is a viscosity gradient, increasing viscosity
tends to minimise the effects of increasing the radial distance. The reader
should note that centrifugal force can only be calculated if both the speed and
radial dimensions of the rotor are known.

Manufacturers usually give the dimensions of rotors in terms of the maxi-
mum and minimum radii, 7y, and ryi,, respectively (see Appendix 111). The
rmax quoted by manufacturers usually relates to the distance to the bottom of
the bucket; especially where thick-walled tubes are being used the r,, and
hence gn.x may be significantly less. Throughout this book, unless otherwise
stated, the centrifugal force will be given as that at the centre of the solution,
that is, the average centrifugal force, g,,.

The other parameter of rotors that is usually quoted is the k-factor (see Ap-
pendix 11I). The smaller the k-factor the greater is the pelleting efficiency of
the rotor. The k-factor can be calculated for rotors using the expression:

ln(rl“‘ﬁ}
kK = 2.53x ](/)\lﬂl[ P Equation 9

If the sedimentation coefficient (s) of particles is known, then the k-factor can
be used to calculate the time in hours (¢) required to pellet the particles using
the relationship:

I =

O =

Equation 10

It must be emphasised that the k-factor is related to the speed of the rotor. All
k-factors relate to the maximum speed of the rotor; at lower speeds the
k-factor is correspondingly increased according to the relationship:

N, £ 5
Kactual = k [ ——max_ Equation 11
<Nactual> ot
Also all k-factors quoted by manufacturers assume that the tubes are full; the
k-factors of rotors are smaller if partially filled tubes are used because the
shorter pathlength enables the particles to pellet more quickly. The other
feature to be remembered is that the k-factor is calculated on the basis that the
density and viscosity of the liquid medium in which the particles are suspended
are not significantly different from the density and viscosity of water, increas-
ing either of these effectively increases the k-factor.

In the case of sucrose gradients there is a viscosity gradient throughout the
tube and hence the k-factor cannot be used. Instead a model system of the time
needed to sediment particles to the bottom of a 5—20% (w/w) sucrose gra-
dient at 5°C is used to define k' and k* factors (7) which allow one to estimate
the sedimentation pattern in a 5 —20% (w/w) sucrose gradient. A series of k'-
values are used depending on the density of the particle (7) while k* factors are
calculated on the assumption that the density of the particle in sucrose is

4
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1.3 g/cm?3; usually this assumption does not introduce large errors into the
calculation (see Appendix I1I). However, for estimating the sedimentation of
particles in sucrose gradients accurately it is often more useful to use computer
simulation metr-ods (see Section 4 of Chapter 4).

3. TYPES OF CENTRIFUGAL SEPARATIONS
3.1 Differential Pelleting

As might be predicted from Equation 5, centrifugation will first sediment
those particles which are largest. In addition, as indicated in Equation 6, very
asymmetrical molecules will sediment more slowly than spherical particles of
the same mass and density. Increasing either the centrifugation speed or the
time of centrifugation will cause smaller particles to pellet also (Figure 2). As
might be expected from Equation 5, differential centrifugation separates par-
ticles not only according to size but also on the basis of density, since particles
that are denser (e.g., nuclei) will pellet at a faster rate than less dense particles
(e.g., membranes) of the same mass. Hence it is sometimes possible to obtain
good separations of particles of similar sizes but different densities by dif-
ferential pelleting. For particles of similar densities one usually requires about
a 10-fold difference in mass to separate one particle from another efficiently
by differential pelleting. The major problem with differential pelleting is that,
as shown in Figure 2, the centrifugal force necessary to pellet the larger par-
ticles from the top of the solution is also often sufficient to pellet the smaller
particles nearer the bottom of the tube. Hence in a single step it is only possible
to obtain a pure preparation of the smallest particles since these will remain in
solution after all the other larger particles have pelleted. The vield of such a
procedure is, however, likely to be low. An alternative approach is to minimise

Centnfugal Force

Centrifugation Time———»

Figure 2. Fractionation of particles by differential pelleting. Reproduced from ref. 7 with permis-
sion.



