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Preface

Understanding the “events” around us through visualization and
observation has always been a fundamental part of our philo-
sophical activity, and the microscope has played a central role
in these processes within the biological sciences. Since the early
days of the invention of the light microscopes in the 17th century,
vast numbers of pioneering discoveries, including the cell theory
of Schleiden (1838) and Schwann (1839), have been made by
using this key research tool [1-3]. More recent modifications of
the light microscope in relation to oil emission, fluorescence, and
phase contrast have enabled it to maintain its role as an invaluable
research tool in modern biology. However, a major limitation
associated with the light microscope is that its resolution is half the
wavelength of light. This is the reason scientists and engineers are
devoted to the development of new instruments with higher and
better resolution.

The invention of the electron microscope (EM) in the 1920s to
the 1930s has enabled the attainment of a hundred times’ greater
resolution than the light microscope and has opened a new era
in our ability to “see” biological materials at the nanometer scale
[4]. The EM requires special specimen preparation and operation
techniques such as coating the sample in a fine layer of gold
and observation in vacuum. These limitations were challenged in
the 1980s by the invention of “scanning tunneling microscopy”
(STM) [5] and “atomic force microscopy” (AFM) [6]—members of
scanning probe microscopy (SPM)—giving rise to a new generation
of microscopes that rely on a physical interaction between a sharp
probe and the sample surface instead of a difference of wavelengths.

The application of AFM to biological samples dates back to the
late 1980s. The significance of this microscopy is the achievement of
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high spatial resolutions similar to the EM and of lesser requirements
for sample preparation, allowing living matter to be monitored
under physiological conditions [7-11]. The observation of deoxyri-
bonucleic acid (DNA) strands by AFM was the first application of this
technique to a biological sample [12]. The first notable application
was made in the early 1990s for the observation of double-stranded
DNA [13-15]. This achievement greatly encouraged many biological
researchers to jump into the nanoworld in the late 1990s (see
Chapters 5, 6, and 9-11). When AFM was invented, the scientists’
immediate thought was that it was a potential tool that could be
a bridge between light microscopy and X-ray crystallography, that
is, to visualize working molecules under physiological conditions.
Unfortunately, the slow imaging speed of the device at that time
made it impossible to directly visualize the molecules in action.
An extraordinary improvement in the device was made by Ando’s
group at Kanazawa University in 2001 [16]. The increased temporal
resolution of several frames per second (fps) in the newly developed
“fast-scanning AFM” allows the action scenes of biological molecules
to be monitored more closely in the subsecond time scale (see
Chapters 8,12, and 13).

In addition to molecular imaging capability, AFM has another
capability, “force measurement,” to measure the elasticity of living
cells [17-21] (see Chapters 14-17). When an AFM cantilever
approaches and pushes against the cell surface, a large indentation
in the cell and its surface is usually observed when the probe
first contacts the cell surface. This indentation can be plotted
against the force of the cantilever and fitted to the Hertz model
equation [22] to estimate Young's modulus, which describes the
elasticity of the sample. The actin network may be responsible
for the elasticity of the cell [23]. Elasticity measurements have
shown that both the plasma membrane and the nuclear envelope
are “flexible” enough to absorb a large deformation formed by
an atomic force microscope probe. Penetration of the plasma
membrane and the nuclear envelope is possible when a probe with
a sharp tip (tip angle of ~25°) deeply indents the cell membrane,
causing the membrane to come close to a hard glass surface [21].
These types of experiments will provide useful information for
the development of single-cell manipulation techniques that are
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applicable to the evaluation of cell properties under physiological
and pathological conditions. The recent development of recognition
imaging using the topography and recognition (TREC)TM mode has
enabled identification of a specific molecule in the AFM image [24-
27]. It is possible to simultaneously obtain a topographic image
and also the position of a specific interaction caused by attractive
forces between the specimen and the protein-coupled (e.g., specific
antibody) cantilever (see Chapters 7 and 14).

Recent development of AFM has been accomplished by various
technical and instrumental innovations including high-resolution
imaging technology in solution, fast-scanning AFM, and general
methods for cantilever modification and force measurement. These
modern AFM technologies have made it possible to conduct
biological studies under physiological conditions. Application of the
recognitionimaging mode that can simultaneously obtain a topo-
graphic image together with a recognition signal is now successful
by using a protein-(antibody)coupled cantilever and has revealed
the specific proteinbindings sites on the chromatin. This monograph
provides an overview of all these modern AFM technologies: basic
AFM protocols in part [, newly developed technologies in part II, and
most recent applications of AFM technologies to biological sciences
in parts III and IV. Much effort will be made to put together most
recent research activities toward establishing a new basic science
field, “nanobiology.” Many friends who contributed chapters in this
monograph are highly acknowledged for their kind and serious
efforts to describe their most recent progress in AFM research. They
are leading scientists in the nanobiology field.
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