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Foreword

The present book is.meant as a text for a course on complex analysis at
the advanced undergraduate level, or first-year graduate level. The first
half, more or less, can be used for a one-semester course addressed to
undergraduates. The second half can be used for a second semester, at
either level. Somewhat more material has been included than can be
covered at leisure in one or two terms, to give opportunities for the
instructor to exercise individual taste, and to lead the course in whatever
directions strikes the instructor’s fancy at the time as well as extra read-
ing material for students on their own. A large number of routine exer-
cises are included for the more standard portions, and a few harder
exercises of striking theoretical interest are also included, but may be
omitted in courses addressed to less advanced students.

In some sense, I think the classical German prewar texts were the
best (Hurwitz—Courant, Knopp, Bieberbach, etc.) and I would recommend
to anyone to look through them. More recent texts have emphasized
connections with real analysis, which is important, but at the cost of
exhibiting succinctly and clearly what is peculiar about complex analysis:
the power series expansion, the uniqueness of analytic continuation, and
the calculus of residues. The systematic elementary development of for-
mal and convergent power series was standard fare in the German texts,
but only Cartan, in the more recent books, includes this material, which
I think is quite essential, e.g., for differential equations. I have written a
short text, exhibiting these features, making it applicable to a wide vari-
ety of tastes.

The book essentially decomposes into two parts.

The first part, Chapters I through VIII, includes the basic properties
of analytic functions, essentially what cannot be left out of, say, a one-
semester course.
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I have no fixed idea about the manner in which Cauchy’s theorem is
to be treated. In less advanced classes, or if time is lacking, the usual
hand waving about simple closed curves and interiors is not entirely
inappropriate. Perhaps better would be to state precisely the homologi-
cal version and omit the formal proof. For those who want a more
thorough understanding, I include the relevant material.

Artin originally had the idea of basing the homology needed for com-
plex variables on the winding number. I have included his proof for
Cauchy's theorem, extracting, however, a purely topological lemma of
independent interest, not made explicit in Artin’s original Notre Dame
notes [Ar 65] or in Ahlfors’ book closely following Artin [Ah 66]. I
have also included the more recent proof by Dixon, which uses the
winding number, but replaces the topological lemma by greater use of
elementary properties of analytic functions which can be derived directly
from the local theorem. The two aspects, homotopy and homology, both
enter in an essential fashion for different applications of analytic func-
tions, and neither is slighted at the expense of the other.

Most expositions usually include some of the global geometric proper-
ties of analytic maps at an early stage. I chose to make the preliminaries
on complex functions as short as possible to get quickly into the analytic
part of complex function theory: power series expansions and Cauchy’s
theorem. The advantages of doing this, reaching the heart of the subject
rapidly, are obvious. The cost is that certain elementary global geometric
considerations are thus omitted from Chapter I, for instance, to reappear
later in connection with analytic isomorphisms (Conformal Mappings,
Chapter VII) and potential theory (Harmonic Functions, Chapter VIII).
I think it is best for the coherence of the book to have covered in one
sweep the basic analytic material before dealing with these more geomet-
ric global topics. Since the proof of the general Riemann mapping theo-
rem is somewhat more difficult than the study of the specific cases con-
sidered in Chapter VII, it has been postponed to the second part.

The second and third parts of the book, Chapters IX through XVI,
deal with further assorted analytic aspects of functions in many direc-
tions, which may lead to many other branches of analysis. I have em-
phasized the possibility of defining analytic functions by an integral in-
volving a parameter and differentiating under the integral sign. Some
classical functions are given to work out as exercises, but the gamma
function is worked out in detail in the text, as a prototype.

The chapters in Part II allow considerable flexibility in the order they
are covered. For instance, the chapter on analytic continuation, including
the Schwarz reflection principle, and/or the proof of the Riemann map-
ping theorem could be done right after Chapter VII, and still achieve
great coherence.

As most of this part is somewhat harder than the first part, it can
easily be omitted from a course addressed to undergraduates. In the
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same spirit, some of the harder exercises in the first part have been
starred, to make their omission easy.

Comments on the Third Edition

I have rewritten some sections and have added a number of exercises.
I have added some material on the Borel theorem and Borel’'s proof of
Picard’s theorem, as well as D.J. Newman’s short proof of the prime
number theorem, which illustrates many aspects of complex analysis in a
classical setting. I have made more complete the treatment of the gamma
and zeta functions. I have also added an Appendix which covers some
topics which I find sufficiently important to have in the book. The first
part of the Appendix recalls summation by parts and its application to
uniform convergence. The others cover material which is not usually
included in standard texts on complex analysis: difference equations, ana-
Iytic differential equations, fixed points of fractional linear maps (of im-
portance in dynamical systems), and Cauchy’s formula for C® functions.
This material gives additional insight on techniques and results applied
to more standard topics in the text. Some of them may have been
assigned as exercises, and I hope students will try to prove them before
looking up the proofs in the Appendix.

I am very grateful to several people for pointing out the need for a
number of corrections, especially Wolfgang Fluch, Alberto Grunbaum,
Bert Hochwald, Michal Jastrzebski, Ernest C. Schlesinger, A. Vijayakumar,
Barnet Weinstock, and Sandy Zabell.

New Haven 1992 SERGE LANG






Prerequisites

We assume that the reader has had two years of calculus, and has some
acquaintance with epsilon—delta techniques. For convenience, we have
recalled all the necessary lemmas we need for continuous functions on
compact sets in the plane. Section §1 in the Appendix also provides
some background.

We use what is now standard terminology. A function

f:8->T

is called injective if x # y in S implies f(x) # f(y). It is called surjective if
for every z in T there exists x € S such that f(x) =z. If f is surjective,
then we also say that f maps S onto T. If f is both injective and
surjective then we say that f is bijective.

Given two functions f, g defined on a set of real numbers containing
arbitrarily large numbers, and such that g(x) = 0, we write

f<g or f(x)<g(x) for x—o©

to mean that there exists a number C > 0 such that for all x sufficiently
large, we have

|/(x)] = Cg(x).

Similarly, if the functions are defined for x near 0, we use the same
symbol < for x — 0 to mean that there exists C > 0 such that

If(x)] = Cy(x)
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for all x sufficiently small (there exists 6 >0 such that if [x| <& then
| f(x)] € Cg(x)). Often this relation is also expressed by writing

f(x) = 0(g(x)),
which is read: f(x) is big oh of g(x), for x » o0 or x—0 as the case
may be.
We use ]a, b[ to denote the open interval of numbers

a<x<bh.

Similarly, [a, b[ denotes the half-open interval, etc.
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PART ONE

Basic Theory



