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ERDOS-KO-RADO THEOREMS:
ALGEBRAIC APPROACHES

Aimed at graduate students and researchers, this fascinating text provides a comprehen-
sive study of the Erd6s—Ko-Rado (EKR) Theorem, with a focus on algebraic methods.
The authors begin by discussing well-known proofs of the EKR bound for intersecting
families of sets. The natural generalization of the EKR Theorem holds for many dif-
ferent objects that have a notion of intersection, and the bulk of this book focuses on
algebraic proofs that can be applied to these different objects. The authors introduce
tools commonly used in algebraic graph theory and show how these can be used to
prove versions of the EKR Theorem. Topics include association schemes, strongly reg-
ular graphs, distance-regular graphs, the Johnson scheme, the Hamming scheme, and
the Grassmann scheme. The book also gives an introduction to representation theory
(aimed at combinatorialists) with a focus on the symmetric group. This theory is applied
to orbital schemes, concentrating on the perfect matching scheme and other partitions,
and to conjugacy class schemes, with an emphasis on the symmetric group.

Readers can expand their understanding at every step with the 170 end-of-chapter
exercises. The final chapter discusses in detail 14 open problems, each of which would
make an interesting research project.

Chris Godsil is a professor in the Combinatorics and Optimization department at the
University of Waterloo, Ontario, Canada. He authored (with Gordon Royle) the popular
textbook Algebraic Graph Theory. He started the Journal of Algebraic Combinatorics
in 1992 and he serves on the editorial board of a number of other journals, including the
Australasian Journal of Combinatorics and the Electronic Journal of Combinatorics.

Karen Meagher is an associate professor in the Department of Mathematics and Statis-
tics at the University of Regina, Saskatchewan, Canada. Her research area is graph
theory and discrete mathematics, in which she has published around 25 journal articles.
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Preface

There are 280 partitions of {1, ..., 9} into three pairwise disjoint triples. Say
two such partitions « and f are skew if each triple in @ contains one point from
each triple in . We can now define a graph with our 280 partitions as vertices,
where two partitions are adjacent if and only if they are skew. A coclique in
this graph is a set of partitions such that no two are skew. We ask the innocent
question: how large can a coclique be?

There is an easy lower bound. Let €2 be the set of partitions such that the
points 1 and 2 lie in the same triple. (There are 70 of these.) Clearly no two
partitions in €2 are skew and so we now have a lower bound of 70 on the size
of a coclique. But now we have two questions. Can we do better? And, if not,
are there any cocliques of size 70 that do not have this form?

Karen asked Chris the first question in 2001, and by a process of induction and
complication, we were led to this book. The complications arise because there
is a close connection to the Erd6s—Ko—Rado Theorem, one of the fundamental
results in combinatorics. This theorem provides information about systems of
intersecting sets. A family F of subsets of a ground set — it might as well
be {1, ..., n} — is intersecting if any two sets in F have at least one point in
common. More generally it is f-intersecting if any two elements of F have at
least 7 points in common. The most commonly stated form of the EKR Theorem
is the following.

0.0.1 Theorem. [f F is an intersecting family of k-subsets of {1, . .., n}, then

If equality holds then F consists of the k-subsets that contain a given point of
the underlying set. O

Xiii



Xiv Preface

In our view this theorem has two parts: a bound and a characterization of
families that meet the bound.

One reason this theorem is so important is that it has many interesting exten-
sions. To address these, we first translate it to a question in graph theory. The
Kneser graph K(n, k) has all k-subsets of {1, ..., n} as its vertices, and two
k-subsets are adjacent if they are disjoint. (We assume n > 2k to avoid triviali-
ties.) Then an intersecting family of k-subsets is a coclique in the Kneser graph,
and we see that the EKR Theorem characterizes the cocliques of maximum size
in the Kneser graph. So we can seek to extend the EKR Theorem by replacing
the Kneser graphs by other interesting families of graphs. The partition graphs
just discussed provide an example.

There is a second class of extensions of the EKR Theorem. In their famous
1961 paper Erd6s, Ko and Rado proved the following:

0.0.2 Theorem. [f F is a t-intersecting family of k-subsets of {1, ..., n} and
n is large enough, then
n—t
F| < .
Pl = <k = t)

If equality holds then F consists of the k-subsets that contain a given t-subset
of the underlying set. O

There are graph-theoretic analogs of this question too, but we have to work a
little harder. In place of the Kneser graphs, we use the Johnson graphs J(n, k).
The vertices of J(n, k) are the k-subsets of {1, ..., n}, but now we deem two
k-subsets to be adjacent if they have exactly kK — 1 points in common. Again
we assume n > 2k. We can show by induction that J(n, k) has diameter k and
thus two k-subsets are adjacent in K (n, k) if and only if they are at maximum
possible distance in J(n, k).

Define the width of a subset of the vertices of a graph to be the maximum
distance between two vertices in the subset. Then our first version of the
EKR Theorem characterizes the subsets of maximum size in J(n, k) of width
k — 1, and the second version the subsets of maximum size with width & — 7.
All known analogs of the EKR Theorem for 7-intersecting sets can be stated
naturally as characterizations of subsets of width d — ¢ in a graph of diameter
d. However, such theorems have only been proved in cases where the distance
graphs form an association scheme (which for now means that they fit together
in a particularly nice way). To give one example, we can replace k-subsets of
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{1,...,n} by subspaces of dimension k over a vector space of dimension n
over GF(q).

What of this book? One goal has been to show how the EKR Theorem can
be tackled using tools from algebraic graph theory. But we are not zealots,
and we begin by discussing most of the known proofs of the EKR bound for
intersecting families; these are not algebraic. We go to develop many of the
tools we need, and then we apply them to strongly regular graphs. We develop
the basic properties of the Johnson scheme, and using these we offer two proofs
of the EKR Theorem for intersecting families of k-sets.

We present a version of Wilson’s proof of the EKR Theorem for ¢-intersecting
families of k-subsets when n > (¢ + 1)(k — ¢ + 1). The main novelty is that in
order to derive the characterization of the maximum families, we make explicit
use of the concepts of width and dual width. (Here we are following important
work by Tanaka [160].) It is comparatively easy to extend this approach to
t-intersecting families of k-dimensional subspaces of a vector space over a
finite field. We complete the first half of the book by treating EKR problems
on words; here the Hamming schemes provide a natural framework.

In the second part of the book, we consider versions of EKR on sets of
permutations and partitions. For this we need to make use of the fact that in
these problems there is a natural action of the symmetric group, and this means
we need information about the representation theory of the symmetric group.
We treat this in some detail (although in many cases we refer the reader to the
literature for proofs).

In the original version of the EKR Theorem there is a requirement that n
be large relative to the size of the subsets and the size of the intersection; this
condition cannot be dropped, and a significant body of work was required to
determine the exact bound on n. For many of the analogs of the EKR Theorem
a bound, analogous to this lower bound on #, is required. It may be possible to
obtain strong results and the assumption that n (or its analog) is “sufficiently
large.” Such results are not the focus of this book; we are more interested in
the combinatorial details involved in finding exact results.

We assume a working knowledge of graph theory, but otherwise we have
tried to keep things self-contained. There are exercises of varying difficulty
at the end of each chapter. In general, if there is a reference attached to the
exercise, expect it to be more challenging.

This book is the culmination of many years of work, and there are many
people whom we wish to thank for their assistance and encouragement in writ-
ing this book as well as many interesting and illuminating discussions. We
specifically wish to thank following people: Bahman Ahmadi, Robert Bailey,
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Adam Dyck, Ferdinand Thringer, Bill Martin, Mike Newman, Alison Purdy
and Pablo Spiga. Finally, we offer our gratitude to Brendan Rooney, who com-
pleted a detailed edit of the entire book. He corrected many errors, both math-
ematical and grammatical, and his contribution has significantly improved this
book!
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