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-Foreword

More than a generation of German-speaking students around the world have worked their
way to an understanding and appreciation of the power and beauty of modern theoretical
physics — with mathematics, the most fundamental of sciences — using Walter Greiner’s
textbooks as their guide.

The idea of developing a coherent, complete presentation of an entire field of science
in a serie$ of closely related textbooks is not a new one. Many older physicists remember
with real pleasure their sense of adventure and discovery as they worked their ways
through the classic series by Sommerfeld, by Planck and by Landau and Lifshitz. From
the students’ viewpoint, there are a great many obvious advantages to be gained through
use of consistent notation, logical ordering of topics and coherence of presentation; beyond
this, the complete coverage of the science provides a unique opportunity for the author to
convey his personal enthusiasm and love for his subject.

The present five volume set, Theoretical Physics, is in fact only that part of the
. complete set of textbooks developed by Greiner and his students that presents the quantum
theory. I have long urged him to make the remaining volumes on classical mechanics and
dynamics, on electromagnetism, on nuclear and particle physics, and on special topics
available to an English-speaking audience as well, and we can hope for these companion
volumes covering all of theoretical physics some time in the future.

‘What makes Greiner’s volumes of particular value to the student and professor alike
is their completeness. Greiner avoids the all too common “it follows that...” which conceals
several pages of mathematical manipulation and confounds the student. He does not hesi-
tate to include experimental data to illominate or illustrate a theoretical point and these
data, like the theoretical content, have been kept up to date and topical through frequent
revision and expansion of the lecture notes upon which these volumes are based.

Moreover, Greiner greatly increases-the value of his presentation by including some-
thing like one hundred completely worked examples in each volume. Nothing is of greater
importance to the student than seeing, in detail, how the theoretical concepts and tools
under study are applied to actual problems of interest to a working physicist. And, finally,
Greiner adds brief biographical sketches to each chapter covering the people responsible
for the development of the theoretical ideas and/or the experimental data presented. It
was Auguste Comte (1798-1857) in his Positive Philosophy who noted, “To understand a
science it is necessary to know its history™. This is all too often forgotten in modern physics
teaching and the bridges that Greiner builds to the pioneering figures of our science upon
whose work we build are welcome ones.



Greiner’s lectures, which underlie these volumes, are internationally noted for their
clarity, their completeness and for the effort that he has devoted t0 making physics an
integral whole; his enthusiasm for his science is contagious and shines through almost
every page.

These volumes represent only a part of a unique and Herculean effort to make all of
theoretical physics accessible tc the interested student. Beyond that, they are of enormous
value to the professional physicist and to all others working with quantum phenomena.
Again and again the reader will find that, after dipping into a particular volume to review
a specific topic, he will end up browsing, caught up by often fascinating new insights and
" developments with which he had not previously been familiar.

Having used a number of Greiner’s volumes in their original German in my teaching
and research at Yale, I welcome these new and revised English translations and would
recommend them enthusiastically to anyone searching for a coherent overview of physics.

D. Allan Bromley

Henry Ford 11 Professor of Physics
Yale University

New Haven, CT USA
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Theoretical physics has become a many-faceted science. For the young student it is diffi-
cult enough to cope with the overwhelming amount of new scientific material that has to
be learned, let alone obtain an overview of the entire field, which ranges from mechanics
through electrodyna nics, quantum mechanics, field theory, nuclear and heavy-ion sci-
ence, sjatistical mec’ anics, thermodynamics, and solid-state theory to elementary-particle
physics. And this knowiedge should be acquired in just 8-10 semesters, during which, in
addition, a Diploma i Master’s thesis has to be worked on or examinations prepared for.
All this can be achiwved only if the university teachers help to introduce the student to
the new disciplines ¢ 3 early on as possible, in order to create interest and excitement that
in turn set free essential, new energy. Naturally, all inessential material must simply be
eliminated. :

At the Johann Wnifgang Goethe University in Frankfurt we therefore confront the stu-
dent with theoretical physics immediately, in the first semester. Theoretical Mechanics I
and I, Electrodynamics, and Quantum Mcchanics [ — An Introduction are the basic courses
during the first two vears. These lectures are supplemented with many mathematical ex-
planations and much support material. After the fourth semester of studies, graduate work
begins, and Quantun: Mechanics Il — Symmetries, Statistical Mechanics and Thermody-
namics, Relativistic Quantum Mechanics, Quantum Electrodynamics, the Gauge Theory
of Weak Interactions, and Quanmum Chromodynamics are obligatory. Apart from these,
a number of supplementary courses on special topics are offered, such as Hydrodynam-
ics, Classical Field Theory, Special and General Relativity, Many-Body Theories, Nuclear
Models, Models of Elementary Particles, and Solid-State Theory. Some of them, for ex-
ample the two-semester courses Theoretical Nuclear Physics and Theoretical Solid-State
Physics, are also obligatory.

The form of the l>ctures that comprise Relativistic Quantum Mechanics — Wave Equa-
tions follows that of all the others: together with a broad presentation of the necessary
mathematical tools, :nany examples and exercises are worked through. We try to offer
science in as interesting a way as possible. With relativistic quantum mechanics we are
dealing with a broad. yet beautiful, theme. Therefore we have had to restrict oursclves‘
to relativistic wave ecjuations. The selected material is perhaps unconventional, but corre-
sponds, in our opinica, to the importance of this field in modern physics:

The Klein—-Gordca equation (for spin-0 particles) and the Dirac equation (for spin-%
particles) angd their applications constitute the backbone of these lectures. Wave equations
for particles with higher spin (the Rarita-Schwinger, spin—%, Kemmer and Proca, spin-1,
and general Bargman1-Wigner equations) are confined to the last chapters.

~ After intreducing the Klein-Gordon equation we discuss its properties and difficulties
(especially with respect to the single-particle interpretation); the Feshbach—Villars repre-
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sentation is given. In many worked-out exercises and examples its practical applications
can be found: pionic atoms as a modern field of research and the particularly challeng-
ing examples on the effective - pmn—nucleus potential (the Kisslinger potential) and its
improvement by Ericson and Ericson stand in the foreground. '

Most of these lectures deal with Dirac’s theory. The covariance properties of the
Dirac equation are discussed in detail. So, for example, its free solutions are on the one
hand determined directly and on the other hand through Lorentz transformations from
the simple solutions in the rest frame. Here the methodical issue is emphasized: the
same physical phenomenon is illuminated from different angles. We proceed in a similar
manner in the discussion of single-particle operators (the odd and even parts of an operator)
and the so-called Zirterbewegung, which is also derived from the consideration of wave
packets of plane Dirac waves. In many worked-out problems and examples the new tools
are exercised. Thus the whole of Chap.9 is dedicated to the motion of Dirac particles
in external potentials. It contains simple potential problems, extensively the case of the
electron in a Coulomb potential (the fine-structure formula), and muonic atoms. In Chap. 10
we present the two-centre Dirac equation, which is of importance in the modem field of
heavy-ion atomic physics. The fundamental problem of overcritical fields and the decay
of the electron—positron vacuum is only touched upon. A full treatment is reserved for
Quantum Electrodynamics (Vol. 4 of this series). However, we give an extended discussion
of hole theory and also of Klein’s paradox. The Weyl equation for the neutrino (Chap. 14)
and relativistic wave equations for particles with arbitrary spin (Chap. 15) follow. Starting
with the Bargmann—Wigner equations the general frame for these equations is set, and
in numerous wotked-out examples and exercises special cases (spin-1 particles with and
without mass, and spin-% particles according to Rarita and Schwinger) are considered in
greater detail. In the last chapter we give an overview of relativistic symmetry principles,
which we enjoy from a superior point of view, since by now we have studied Quantum
Mechanics — Symmetries (Vol. 2 of this series).

We hope that in this way the lectures will become ever more complete and may lead
to new- insights.

Biographical notes help to obtain an unpressnon, however short, of the life and work
of outstanding physicists and mathematicians. We gratefully acknowledge the publishers
Harri Deutsch and F.A. Brockhaus (Brockhaus Enzyklopddie, F.A. Brockhaus — Wiesbaden

- indicated by BR) for giving permission to use relevant information from their publications.

Special thanks go to Prof. Dr. Gerhard Soff, Dr. Joachim Reinhardt, and Dr. David
Vasak for their critical reading of the original draft of these lectures. Many students and
coljaborators have helped during the years to work out examples and exercises. For this
first English edition we enjoyed the help of Maria Berenguer, Christian Borchert, Snje%ana
Butorac, Christian Derreth, Carsten Greiner, Kordt Griepenkerl, Christian Hofmann, Raf-
faele Mattiello, Dieter Neubauer, Jochen Rau, Wolfgang Renner, Dirk Rischke, Alexander
Scherdin, Thomas Schonfeld, and Dr. Stefan Schramm. Miss Astrid Steidl drew thé graphs
and prepared the figures. To all of them we express our sincere thanks.

We would especially like to thank Mr. Béla Waldhauser, Dipl.-Phys., for his overall
assistance. His organizational talent and his advice in technical matters are very much
appreciated.

Finally, we wish to thank Springer-Verlag; in particular, Dr. H.-U. Daniel, for his
encouragement and patience, Mr. Michael Edmeades for expertly copy-editing the English
edition, and Mr. R. Michels and his team for the excellent layout.

Frankfurt am Main, May 1990 Walter Greiner
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« 1. Relativistic Wave Equation for Spin-O Particles
The Klein-Gordon Equation and Its Applications

The description of phenomena at high energies requires the investigation of relativistic
wave equations. This means equations which are invariant under Lorentz transformations.
The fransition from a nonrelativistic to a relativistic description implies that several con-
cepts Of the nonrelativisti theory have to be reinvestigated, in particular:

1) Spatial and temporal coordinates have to be treated equally within the theory.

2) Since
h h
AIE N.——— A e
.\Ap moc

a relativistic 'éarticle cannot be localized more accurately than =~ h/mgc; otherwise pair
creation occuxs for E >2mgc?. Thus, the idea of a free particle only makes sense, if
the particle is not confined by external constraints to a volume which is smaller than
approximately the Compton wavelength Ac = h/mgc. Otherwise the particle automatically
has companions dye to particle-antiparticle creation.

3) If the position of the particle is uncertain, i.e. if

fou
Az > .
moc

then the time is also uncertain, because

Az h
At~ — > —
C 'I'TI,()C2
In a nonrelativistic theory At can become arbitrarily small, because ¢ — oco. Thereby, we
recognize the necessity to reconsider the concept of probability density

oz, y, z, 1)

which describes the probability of finding a particle at a definite place = at fixed time t.

4) At high (relativistic) energies pair creation and annihilation processes occur, usually
in the form of creating particle-antiparticle-pairs. Thus, at relativistic energies particle
conservation is no longer a valid assumption. A relativistic theory must be able to describe
pair creation, vacuum polarization, particle conversion, et.

1.1 The Notation

First we shall remark on the notation used. Until now we have expressed four-vectors by
Minkowski’s notation, with an imaginary fourth component, as for example



z = {z, y, z, ict} (world vector)

p= {Pz, Pys Pz» iE/c} (four-momentum)
A={A;, Ay, A,, idp} (four-potential)
o 9 0o 17} o :
V = A YA ' A A~ - i . ®
{ 5z’ By’ 0z 1B (ct)} (four-gradient), etc (1.1

The letters z, p, A, V abbreviate the full four-vector. Sometimes we shall also denote
=

> = = . . . .
them by z, p, 4, V, etc,, i.e. with a double arrow. As long as there is no confusion
arising, we prefer the former notation. For the following it is useful to introduce the metric
tensor (covariant components)

goo go1. 902 903 1 0 0 0
gi0 911 912 913 0 -1 0 0
= = . 1.2
=\ g0 g 92 93 0 0 -1 0 (1.2)
g3 931 912 933 0 0 0o -1

Thereby, one can denote the length of the vector dz = {dz*} as ds? = dz-dzr =
guvdzHdz?. This relation is often taken as the defining relation of the metric tensor.!The
contravariant form g*¥ of the metric tensor follows from the condition

1 0 0 O
def (O 1 0 O
g“agdl/ = 65 = O 0 1 0 ’ (1.3)
0 0 0 1
1 0 0 0
A 0 -1 0 0
uo _ -1 _ “po
=06 De="=lo o -1 o 14
0 0 0 -1

Here A, is the cofactor of g,, [i.e. the subdeterminant, obtained by crossing out the
pth row and the oth column and multiplying it with the phase (—1)#*?] and ¢ is given by
g = det(g,,) = —1. For the special Lorentz metric the contravariant and covariant metric
tensor are identical:

g"¥ = gy [for Lorentz metric!]
From now on we will use the contravariant four-vector
zh = {.io, z!, 72, x3} = {ct, z, y, 2} (1.5)

for the description of the space-time coordinates, where the time-like component is denoted
as zero component. We get the covariant form of the four-vector by “lowering” the index
p with the help of the metric tensor, i.e.

Ty =gupz’ ={ct, —z, —y, —z}= {:co, zy, 2, z3} . (1.6)

1 'We adopt the same notation as J.D. Bjorken, S.D. Drell: Relativistic Quantum Mechanics (McGraw Hill,
New York 1964).
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Similarly the indices can be “raised” to give
gt =gtz = {zo, !, 72, 2:3} .

This means that one can easily transform the covariant into the contravariant form of a
vector (respectively of a tensor) and vice versa. Except in special cases, where we denote
it explicitly, we use Einstein’s summation convention: We automatically add from 0 to 3
over indices occuring doubly (one upper and one lower index). So we have, for example,

3
zoz=ztz, = Y rhz, = %29 +zlzy + 2223 + 2025
p=0
¥ S R N
= —2? . (1.7)

The definition of the four-momentum vector is analogous,

= {E/c, Pzs Py» Pz} ’ - (1.8)

- and we write the scalar product in four dimensions (space-time) as

E, By -
pl-pz=p‘{pzp=-ci-;—m'pz , (1.9)
or equally &
z-p=ztpy=z,p!=Et—z-p . (1.10)

We identify the four-vectors by a common letter. Thus, for instance,
a= {ao, ay, ay, a3}

In contrast to this we denote three-vectors by bold type as in
a= {al, a, a3} :

Often we write only the components. Hence,
at = {ao, a!, a2, a3}

means a four-vector with contravariant components. Greek indices, such as p, always run
from 0 to 3. Latin indices, as for example z, imply values from 1 to 3. A three-vector can
thus also be written in contravariant form as

2

aiz{al,a ’aa} or as ai={al’ a2’ a3} -

in covariant form. So the four-momentum operator is therefore denoted by

* =iﬁ—a— = {ihé(—?:t_)’ +ihi, +ihi, +ihi}

Oz, Oz, Oz, Oz3
7] 0 .. 0 L0
=i ‘7“ ={ —— —ih—, —ih—, —1h—
=in {B(d)’ lhaz’ 1h'ay' lhaz}
o
o _gl . 111
lh{a(ct)’ } (1)



It transforms as a contravariant four-vector, so that

ﬁ”ﬁu=—ﬁ2-—a—i=_h2(%%_(i Y] 82))

Oz, O+ dz? * a_yE * 822
1 8%
= ~Kh=s-F |===-4] . 1.
(322-4) @

This equation defines both the three-dimensional delta operator (A = V?2) and the four-
dimensional d’Alembertian (O = (1/c29%/8t> — A). Finally we check the commutation
relations of momentum and position by means of (1.11 and 1.5), obtaining

wxll @ ; Oz
. T =ih|=—, ¢"72,| =ihg""—=
[ﬁy V]_ h[a vo ] lhg aa
Ty - Ty
=ihg"? ¥ =ihg"¥ = ihgt” . (1.13)

On the right hand side (rhs), the metric tensor g#¥ appears expressing the covariant form
of the commutation relation.

The four-potential of the electromagnetic field is given by
AF = {Ag, A} = {Ao, Az, Ay, Az} =g" A, . (1.14)

Here A* are the contravariant, and A, = {Ag, — Az, — Ay, — A} the covariant
components. From A# the electromagnetic field tensor follows in the well-known way:

O E E, E

0AF  0AY -E 0 B, -B
uy _ _ = z ol y 1.15
P =%y "8, \-E, -B. 0 B, —
—-E, By -B; 0
1.2 The Klein-Gordon Equation
From elementary quantum mechanics? we know that the Schrédinger equation
2
i o | - 9 v@)| g (1.16)
ot 2myg
corresponds to the nc;melativistic energy relation in operator form,
. PP |
E=—+V(x) , where (1.17)
2myg
E=inl p=—ihV (1.18)
ot p .

are the operators of energy and momentum, respectively. In order to obtain a relativistic

2 See Vol. 1 of this series, Quantum Mechanics - An Introduction (Springer, Berlin, Heidelberg 1989).



