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PREFACE

This book on the fundamentals of creep plasticity is a review and analysis of
investigations in a variety of areas relevant to creep plasticity. These areas
include five-power-law creep, which is sometimes referred to as dislocation
climb-controlled creep (in metals, alloys, and ceramics), viscous glide or
three-power-law creep (in alloys), diffusional creep, Harper-Dorn creep,
superplasticity, second-phase strengthening, and creep cavitation and
fracture. Many quality reviews and books precede this attempt to write an
extensive review of creep fundamentals and the improvement was a chal-
lenge. One advantage with this attempt is the ability to describe the sub-
stantial work published subsequent to these earlier reviews. An attempt was
made to cover the basic work discussed in these earlier reviews but
especially to emphasize more recent developments.

This is the second edition of this book and one aspect of this recent
edition is correcting errors in the first edition, also, many advances occurred
over the five years since the first edition and theses are also incorporated.
Dr Maria-Teresa Perez-Prado was a co-author of the first edition. While
she did not participate in the formulation of the second and third editions,
Chapters 5, 6, and 9 remain largely a contribution by Dr Perez-Prado, and
her co-authorship is indicated on these chapters.

xi
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CHAPTER 1

Fundamentals of Creep in
Materials

Contents

1. Introduction 1
1.1 Description of Creep 1
1.2 Objectives 6

1. INTRODUCTION
1.1 Description of Creep

Creep of materials is classically associated with time-dependent plasticity
under a fixed stress at an elevated temperature, often greater than roughly
0.5 Ty, where Ty, is the absolute melting temperature. The plasticity under
these conditions is described in Figure 1 for constant stress (a) and constant
strain rate (b) conditions. Several aspects of the curve in Figure 1 require
explanation. First, three regions are delineated: Stage I, or primary creep,
which denotes that portion where (in (a)) the creep rate (plastic strain rate),
& = de/dt is changing with increasing plastic strain or time. In Figure 1(a),
the primary creep rate decreases with increasing strain, but with some types
of creep, such as solute drag with “3-power creep,” an “inverted” primary
occurs where the strain rate increases with strain. Analogously, in (b), under
constant strain rate conditions, the metal hardens, resulting in increasing
flow stresses. Often, in pure metals, the strain rate decreases or the stress
increases to a value that is constant over a range of strain. The phenomenon
is termed Stage II, secondary, or steady-state (SS) creep. Eventually, cavi-
tation and/or cracking increases the apparent strain rate or decreases the flow
stress. This regime is termed Stage III, or tertiary, creep and leads to fracture.
Sometimes, Stage I leads directly to Stage III and an “inflection” is observed.
Thus, care must sometimes be exercised in concluding a mechanical SS.

The term “creep” as applied to plasticity of materials likely arose from
the observation that at modest and constant stress, at or even below the
macroscopic yield stress of the metal (at a “conventional” strain rate), plastic
deformation occurs over time as described in Figure 1(a). This is in contrast
Fundamentals of Creep in Metals and Alloys
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2 Fundamentals of Creep in Metals and Alloys

(a) T>05T,
o =constant = osg

(b)

T>05T,
€ = constant = &

Oss F---

J

11

€

Figure 1 Constant true stress and constant strain rate creep behavior in pure and
Class M (or Class I) metals.

with the general observation, such as at ambient temperature, where a
material deformed at, for example, 0.1-0.3 T}, shows very little plasticity
under constant stress at or below the yield stress, again, at “conventional” or
typical tensile testing strain rates (e.g., 107*-10* s™"). (The latter obser-
vation is not always true as it has been observed that some primary creep is
observed (e.g., a few percent strain, or so) over relatively short periods of
time at stresses less than the yield stress (e.g., [1,2])).

We observe in Figure 2 that at the “typical” testing strain rate of about
107% 57", the yield stress is oy1. However, if we decrease the testing strain
rate to, for example, 1077 s, the yield stress decreases significantly, as will
be shown is common for metals and alloys at high temperatures. To a “first
approximation,” we might consider the microstructure (created by dislo-
cation microstructure evolution with plasticity) at just 0.002 plastic strain to
be independent of €. In this case, we might describe the change in yield
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Figure 2 Creep behavior at two different constant strain rates.

stress to be the sole result of the & change and predicted by the “constant
structure” stress-sensitivity exponent, N, defined by.

N=[0Iné&/dInal, (1)

where T and s refer to temperature and the substructural features, respec-
tively. Sometimes, the sensitivity of the creep rate to changes in stress is
described by a constant structure strain-rate sensitivity exponent, m = 1/
N. Generally, N is relatively high at lower temperatures [3] which implies
that significant changes in the strain rate do not dramatically affect the flow
stress. In pure fcc metals, N is typically between 50 and 250 [3]. At higher
temperatures, the values may approach 10, or so [3—10]. N is graphically
described in Figure 3. The trends of N versus temperature for nickel are
illustrated in Figure 4.

Another feature of the hypothetical behaviors in Figure 2 is that (at the
identical temperature) not only is the yield stress at a strain rate of 1077 s~
lower than it is at 107" s, but also the peak stress or, perhaps, SS stress,
which is maintained over a substantial strain range, is less than the yield stress
at a strain rate of 107" s, (Whether SS occurs at, for example, ambient
temperature has not been fully settled, as large strains are not easily
achievable. Stage IV and/or recrystallization may preclude this SS [11-13].)



