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PREFACE TO THE SECOND EDITION

Having received numerous suggestions over the past years, the
text of this edition was subsequently improved. The number of
problems has been increased and answers were provided; numerous
errors were climinated and the section dealing with momentum
was enlarged.

During the years following the appearance of the first edition,
the book was used to a fair extent in the United Kingdom and to
a larger extent abroad. This is gratifying and the author expresses
hope that interest in this edition will be unfailing.

The author wishes to express his appreication to the various
users of the first edition who have offered useful suggestions; he
also wishes to extend his gratitude to the various reviewers of the
first edition whose fair appraisal of the text substantially enhanced
its success.



PREFACE

THis text was planned primarily to provide in one volume adequate
coverage for undergraduates studying for a degree or diploma in
Mechanical or Civil Engineering. It is hoped that parts will be
useful for Higher National Certificate courses.

-Emphasis is laid upon the broad representation of the funda-
mentals, leaving certain topics not included in the text for the choice
of individual teachers. A large number of examples with complete
solutions are given and these have been carefully selected to illustrate
the preceding theory. In some cases more than one example
illustrates the theory and wherever possxble simple examples precede
the more complex ones.

-It is suggested that students in Mechanical Engineering may omit
Flow in Open Channels whilst students in Civil Engineering may
omit some details of Rotodynamic Machinery and of Compresmblc
Fluid Flow.

The text is subdivided into self-contained chapters each covering
the relevant field as completely as it was thought practicable. So
far as possible, theory was kept in the neighbourhood of its applica-
tion. For example, manometers are dealt with in the chapter on
Fluid Metering, and moment of momentum and free vortex are
treated in the later chapter on Rotodynamic Machinery. - For
similar reasons, Wing Theory, although an independent field, may
be linked with Axial Flow Machinery and may serve as a forerunner
to that chapter.

It is anticipated that certain elementary concepts such as densny,
pressure, force etc., have already been introduced in physics and
their detailed discussion is omitted from the text.

The author expresses sincere appreciation to Messrs R. A. Bryant,
B. Langevad, C. Sapsford, R. Vallentine, and A. D. Owen of the
University of Technology, Sydney, to Messrs J. Palmer and
K. Moore of the College of Aeronautics, Cranfield, and Royal
Aircraft Establishment, Bedford, respectively, for their critical
examination of the manuscript and for their useful suggestions.
It is acknowledged that some of the examples and problems were
adopted from past examination papers of the N.S.W. University of
Technology.

Any suggestions which might improve the text will be welcomed
by the author. ‘

Cranfield, Buckinghamshire
March, 1957
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1
FLUID STATICS

1.1 Introduction

WaEN fluids-are at rest the associated problems fall into the category
which is generally termed Fluid Statics. These problems are far
simpler and fewer than those associated with Fluid Motion. Since no
relative movement is experienced between fluid layers any mutual
action due to viscosity is non-existent, and calculations may ignore
viscosity effects completely; because of this, solutions may be
obtained by simple methods without the aid of complex experiments.

The free surface of liquids at rest lies in the gravitational equi-
potential planes. This is the reason why the surfaces of oceans
follow the earth’s curvature. For practical purposes the free surface
of a liquid in a container may be considered perfectly plane pro-
vided the dimensions of the container are small (relative to the
diameter of the earth). When we consider a longer channel,
however, say 1,000-2,000 ft. long like the modern towing tanks used
. for model ship research, the curvature must be considered, as the
deviation from the straight line may be of the order of, say, 1/10 of
an inch.
Pressure, p, in fluids is a scalar quantity, that is a quantity without
" any direction, so that at any point of a fluid aggregate the pressure
‘may not be represented by a vector. In other words, at any one
point the pressure is the same in all directions. Once a surface, 4, is
_specified the pressure acting on the surface produces a force, which is

a vector of a magnitude p . 4, and direction normal to the surface
(see Fig. 1.1).

1



FLUID STATICS

1.2 Fundamentals of Fluid Statics

The fundamental problem of fluid statics is the determination of
the distribution of pressure in a homogeneous fluid.

Consider a tank of cross-section § filled with liquid of specific
weight w as shown in Fig. 1.2. Going down from the free surface
each layer of liquid of thickness A/ rests on the next layer, the weight
of each layer being w. AkS. It may be seen therefore that the
pressure continuously increases with depth by an amount

wcxght w ARS

for each distance Ak traversed.

Ah{}_‘ —

Figure 1.2—Distribution of pressure in a tank

Hence ‘
Ap dp
w-—hmAh .ea (L)
Integration yields
= fwdh -..-(12)

Equation 1.2 at once brings up the question of compressibility,
because in order to integrate the equation a relationship between
w and & must be given. Liquids are considered incompressible so
that w is independent of k. Therefore for liquids ‘

p=w.h ...(13)

which represents a linear relationship between depth and pressure
(h being measured from the free surface).

Gaseous fluids on the other hand are comprtsslble and follow the
law of the gas equation

1
pv = RT where v = —
w

2.



FUNDAMENTALS OF FLUID STATICS

so that Eq. 1,1 becomes
dp p - dp dh

— &% = RT s~ " RT ... (1.4)
The negative sign is due to g decreasing with increasing A.

Integration of Eq. 1.4 leads to the vertical pressure distribution of
the atmosphere. However, in order to integrate the right hand side
of Eq. 1.4 a relationship between % and T must be given.

The international standard atmosphere is defined by the assump-
tion that the relationship between the temperature 7' and height 4,
measured from sea level, is a linear one given by the lapse rate

d7

a=—= 0-00198°C per ft.

This holds fairly accurately up to 36,000 ft. Integration leads to
T =T, — 000198k

Since the standard temperature at sea level is adopted as 15°C,
T,=2732 + 15 = 288-2°K.

Hence T = 288-2 — 0-00198¢.
Substituting the lapse rate into Eq. 1.4, one obtains
dp 1 dr
p aR''T

Integration leads to

or
r_ (1)ﬁ
bo T,
Since 1/aR = 1/0-00198 x 96 = 5-256
one finally obtains
P’; — (1 — 0-00000687))5% ....(15)
o :

where p, is the pressure at sea level. Similar relation exists for the
density change with height. Values of p, based on Eq. 1.5 are given
in tables published by the N.A.C.A.}

1 National Advisory Committee for Aeronautics, Report 1235/1955.

' 3
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FLUID STATICS

1.3 Pressure Forces on Submerged Plane Surfaces. Centre
of Pressure

Practical application of Eq. 1.3 may be found when pressure
forces on surfaces submerged in liquids are calculated. Examples of
such surfaces are lock gates and valves. The problem involves the
calculation of the total force and its location which is frequently
called the centre of pressure.

Consider a flat plate 4-B of surface area § which may be of arbi-
trary shape, covering a submerged opening in the side of a reservoir
(see Fig., 1.3). The plane of the plate makes an angle « with the free
liquid surface and at a depth %, taken from the free surface, the
pressure p = wh. The force acting on an elementary area dS of the
plate dF = dSp = dSwh.

..|Illll
NN\ \\K&§

e (Ll

Figure 1.3—Pressures on a submerged plane surface

The total force on the plate may be obtained upon integration

L} 8
F=w‘[ hdS=wsinaf {dSs

0 0
where the expressioh [ /dS = IS =J; is called the first moment

of area § about the horizontal axis 0.
Therefore
F = Liwsin o ....(1.6)

The location of the total force, called the centre of pressure, may
be obtained by taking moments of the force elements about the axis 0
and equating the sum of these moments to the moment of the total
force about the same axis. Thus

fwhdSI =F.1I (L)
4

i



PRESSURE FORCES ON SUBMERGED PLANE SURFACES
where [, is the distance of the centre of pressure from 0. Since
h=1l.sin , the left hand side of Eq. 1.7 becomes w sin « Ju 2dS.
This integral is called the second moment of the area around 0.
Denoting this by Iy we have

F. lo = w sin al; n
Substituting for F from Eq. 1.6 one obtains the centre of pressure

. Iy second moment} of area §
=0

I; ~ first moment | aboutO. - (1.8)
The depth of the centre of pressure is given by
hy =1 sina

It may be shown that the centre of pressure lies always below the
centre of gravity. Denoting the distance between the two by
Al and considering that Iyy = Ig g + 35, where I g is the second
moment of the area about the horizontal axis through the centre of
gravity, then

Iog + IS Iee
_ M= —l=7
For plane surfaces which are asymmetric about the vertical centre

line, the lateral position of the C.P. or C.G. may be obtained by
taking moments laterally about a convenient axis.

..(1.9)

Example

1.1. A submerged circular opening, cut in the side of a water tank, is
provided with a cover plate. The diameter of the opening is 6 ft. and its
centre lies 10 ft. below the free surface of the water. Calculate the magnitude
and location of the total force acting on the surface, if the angle of inclination
of the side is 45°,

Solution.—The first moment of the circular area

10 6% s
e
Hence the total force

F = 400 x 624 x 0-707 = 17650 Ib.
The second moment of the circular area about a diameter is given by
d 64r ‘
767’ hence Itig.g = a— = 63-8 ft.
The second moment about 0

II]—538--1-~(-sk X 1422—5744

5



FLUID STATICS

Distance of centre of pressure from 0

=% 1436

Hence )
Al = 1436 — 142 =016 ft.
1.4 Pressure Forces on Submerged Curved Surfaces

Consider now a curved surface shown in Fig. 1.4. The pressure
forces at any point act perpendicularly to the surface and there

E. 44y < -
Loty E =z - ’5
L AR, % 1 A
- / :.-
4 ZL
2 / 1
; 7
X E 2 ‘
2 % hdS "
“ wi
) s E hy 774
- PPP PP /
M Sy %
% P%
: \Y
P R A dh
h Pa F e ds
N £, g dS¢
Figure 1.4 Figure 1.5

Pressures on a submerged curved surface

will be a resultant force F which may be resolved into two
components, F, being the horizontal and F, the vertical component.
These forces may be obtained from the following considerations,

At a point P of the surface an element dS is inclined to the
horizontal at an angle a (see Fig. 1.5).

The horizontal component of the elementary pressure force p dS
(acting on unit width) is p dS'.sin a; and since dSsin a = dA the
total horizontal force

2 By w
F,=fpdh=wf h.dh:i(hﬁ—hf)=w8,ﬁ ... (1.10)
: 1 by
where

_ itk
k= 2

6



PRESSURE FORCES ON SUBMERGED CURVED SURFACES

and the projection of the curved surface onto a vertical plane
_ Sy=hy — by

Since S,k is the first moment of the projected area about the axis 0,
the horizontal force is identical with the result of Section 1.2 and the
centre of pressure may be found on similar lines. It may be seen that
the horizontal force is independent of the shape. of the curved
surface.

The vertical component of the elementary pressure force acting on
dsis p dS cos a and since dS cos @ = dS, the total vertical force

F,=[pdS,=uw [hds, .. (L.11)

Eq. 1.11 represents the weight W of the vertical liquid column over
the curvcd surface extending to the free liquid surface.

Figure 1.6

Taking moments of the vertical forces about a convenient axis gives

the location of F,. The line of action of F, must pass through the-

centre of gravity of the liquid column over M—N To find distance
%, equate the sum of the mon;;nts to Fox,.

Example
1.2, The dimensioned cross-section of a water tank is shown in Fig. 1.6.
Calculate the force acting on the segment M-N and find its location. The
tank is 25 ft. long.
Solution.—Vertical area §, = 4 x 25 = 100 ft.2
Horizontal force F, = 62 ‘4 x 100 x 7 = 43700 Ib.
" Io.g of vertical surface = _25 l)2< £ = 1335 frd




FLUID STATICS

Hence vertical location of C.P.
133-5

TvaT 7-19ft. o oy, =219t

IL,=17+

Vertical force
42” .
F,=|(4 x3)+ T] 25 x 62:4 = 50800 lb.

Equilibrium of moments about 0 gives

6244 x 25[(5 x 4) X 2 + (} X 437 x 0:576 x ] = 107,400 Ib.
thus %, = 1258320 ~ 212,

The total force
F = /(437002 + 50800%) = 67800 Ib.

1.5 Buoyancy of Subinerged and Floating Bodies

Consider a prismatic body submerged in a fluid. (see Fig. 1.7).
If the spec1ﬁc weight of the body is w, its weight is W = w,V,
where V is its volume. The buoyant force Fg = S(p, — p;) =
S(hy — hy) . w, where w is the specific weight of the liquid. Since
© Sk, — hl) = V the net force

W —Fp="V(w,—w) coe(112)
and is independent of the depth of submergence.

It follows from Eq. 1.12 that if w, << w the body rises to the sur-
face and if w, > w the body sinks in the fluid.

/ %
Wb
! w
4 b /14
i I e
| BE,
Figyre 1.7-—Pressures on a submerged Figure 1.6—Pressures on a
o body floating body

The weight ‘lost’ by the body is actually equal to the weight of the volume of
fluid displaced (Archimedes’ Law).

The same law applies to floating bodies (see Fig. 1.8) which are
able to float only if the weight of the fluid displaced is equal to total
weight of the body. '

When a balloon filled with a gas lighter than air begins to ascend,
the net buoyant force is proportional to the difference between the
specific weights of air and gas. Since the air density decreases with

8



