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Preface

Nonlinear control systems have undergone tremendous advances in the
last two decades at the levels of theory and applications. Among these, a class
of particular interest is the one resulting from the interaction of a control
system with a system governed by the dynamics of a different nature. This
class of systems lies in the hybrid and nonlinear control systems field. In the
last decade, the study of such hybrid systems, whose behavior can be
mathematically described using a mixture of logic-based switching and
difference/differential linear or nonlinear equations, has attracted important
research efforts. The fact that many physical systems are controlled or
supervised by controllers with such mixed dynamics constitutes a great
motivation for such studies. We can cite many applications (such as
automotive, networked control systems, energy management and biology) in
which analysis and design methods for systems evolving both continuous and
discontinuous components are then needed. Furthermore, among many
important problems formulated in the context of hybrid systems, switched
control systems have been attracting much attention in recent years.
Nevertheless, many important mathematical problems remain open. These
include analysis and control of hybrid systems with a periodic behavior,
control of systems with actuator constraints and hybrid control design with
prescribed performance. These open problems are mainly motivated by their
practical impact. Hybrid systems with periodic behavior cover an important
class of embedded systems. Available approaches are mainly dedicated to
specific applications of these devices and today there is a serious lack of
rigorous tools for analyzing and synthesizing control algorithms for such
systems. To improve their performance, the objective is to go beyond the
classical simplified modeling that does not capture the hetrogeneous nature of
these systems.
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This book deals with control theory and, in particular, discusses the
problems of analysis and control design in the context of hybrid dynamical
systems. This book is mainly focused on hybrid systems with constraints.
Taking into account the constraints in a dynamical system, description has
always been a critical issue in control theory. The book provides new tools for
stability analysis and control design for hybrid systems with operating
constraints and performance specifications. Hence, it is important to underline
that there is no book that focuses on constraints for the analysis and control of
hybrid systems. This book proposes new approaches for open problems with
practical impact. We focus on the presence of constraints in hybrid systems
considered as a critical issue in control theory. This includes discontinuities
arising from non-smooth impacts, saturations and nested saturations on
signals, positivity and interconnection structure, algebraic equations, etc. To
provide a coherent panel, the book is structured into eight chapters organized
in two main parts related to the kind of systems handled: switched systems
(which include Chapters 1-4) and hybrid systems (which include Chapters
5-8). Chapter 6 provides, in particular, a nice overview of recent theoretical
results and challenging problems.

We think that this book constitutes an add-in overview of results and
techniques with respect to the recent literature. We hope that it will be a useful
reference for researchers, practitioners, and graduate students in systems and
control theory. We hope that readers will appreciate the open problems
discussed in this book and methods that take into account various types of
constraints such as positivity constraints (Chapter 1), sector nonlinearity
(Chapter 2), algebraic constraints (Chapter 3), persistent excitation constraints
(Chapter 4), coordination constraints (Chapter 5), actuator constraints
(Chapter 7) and discontinuities issued from impacts (Chapter 8).
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Chapter 1

Positive Systems: Discretization with
Positivity and Constraints

In this chapter, we discuss the problem of preservation of two properties
pertaining continuous-time systems under discretization, namely the
properties of positivity and sparsity. In the first part of the chapter, the action
of diagonal Padé transformations is studied together with the preservation of
copositive quadratic and copositive linear Lyapunov functions. A variation of
the scaling and squaring method is then introduced and shown to be able to
preserve such Lyapunov functions and positivity for small sampling times. In
the second part, besides positivity, the problem of preservation of the structure
(sparseness) of the continuous-time system under discretization is analyzed.
The action of the standard forward Euler discretization method is discussed
and a new approximation method — mixed Euler — ZOH (mE-ZOH) is
introduced that preserves copositive Lyapunov functions, the sparseness
structure and the positivity property for all sampling times.

1.1. Introduction and statement of the problem

This chapter is devoted to the study of the effects of discretization in the
preservation of two properties pertaining linear systems, namely (1) positivity
and (2) structure. The first property characterizes systems whose inputs, state

Chapter written by Patrizio COLANERI, Marcello FARINA, Stephen KIRKLAND,
Riccardo SCATTOLINI and Robert SHORTEN.
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and outputs take non-negative values in forward time. As part of the more
general class of monotonic systems [ANG 03], such systems characterize the
dynamic behavior of processes frequently encountered in engineering and in
social, economic and biological sciences. A few monographs are now available
where both the mathematical properties and the application interest of such
systems are underlined [BER 94, FAR 00].

The important problem of obtaining reliable discrete-time approximations
to a given continuous-time system arises in many circumstances: in
simulation issues, in control system design, in certain optimization problems
and in model order reduction [ANT 05, FAL 08]. While a complete
understanding of this problem exists for linear time-invariant (LTI) systems
[WES 01], and some results are available for switched linear systems
[ROS 09, SAJ 11], the analogous problems for positive systems are more
challenging since discretization methods must preserve not only the stability
properties of the original continuous-time system, but also physical
properties, such as state positivity. To the best of our knowledge, this is a
relatively new problem in the literature, with only a few recent works on this
topic [BAU 10]. In particular, we stress the importance of this issue in the
framework of switched positive systems, a research field still in its infancy,
but with growing importance in telecommunications, biological networks and
cloud computing (see [SHO 07, SHO 06, BAR 89, HAR 02]). Generally
speaking, we are interested in the evolution of the system:

ko(t) = Ag, (yxe(t), oc(t) € {L,...,m}, x.(0) = xq, [1.1]

where A, € R"™ are Hurwitz stable Metzler matrices, z.(t) € R"*! and
m > 1. We are interested in obtaining from this continuous-time positive
system, a discrete-time representation:

xq(k +1) = Fy y(h)xa(k), oa(k) € {1,..., m}, xq4(0) = x¢. [1.2]

where h > 0 is the sampling interval. The first objective of this chapter is to
study diagonal Padé approximations to the matrix exponential. Such a study is
well motivated, as diagonal Padé approximations are methods used by control
engineers. Following [ZAP 12], we deal with two fundamental questions.
First, under what conditions are certain types of stability of the original
positive switched system inherited by the discrete-time approximation?
Second, we also ask if and when positivity itself is inherited by the
discrete-time system. We give sufficient conditions under which the Padé
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approximation is positivity preserving, and identify a new approximation
method that is guaranteed to preserve both stability and positivity.

The second objective of this chapter arises from the need of discretizing
large-scale systems. In this context, we are often interested in discretization
methods that preserve the structure of a dynamic system. We aim to find
efficient discretization methods which preserve, for the elements of F,,_(h),
the same zero/non-zero pattern of A,_. The attention here is focused on
positive switched systems only, along the lines traced in [COL 12]. First, we
analyze the properties of the forward Euler transformation, which intrinsically
preserve the zero pattern of the off-diagonal entries of the dynamic matrix.
However, it is well known that the forward Euler transformation can easily
lead to a loss of stability even for short sampling times. We then propose a
novel mE-ZOH discretization method that preserves the structure
independently of the sampling time, with improved performance in terms of
stability preservation.

The chapter is organized as follows: in section 1.2, we study Padé
transformations and their properties, while in section 1.3 we propose the new
mE-ZOH transformation and we analyze some of its properties. Section 1.4
concludes the chapter.

NOTATION. In this chapter, the following notations are used: capital letters
denote matrices and small letters denote vectors. For matrices or vectors, (')
indicates transpose and (*) the complex conjugate transpose. For matrices X
or vectors z, the notation X or z > 0 (> 0) indicates that X, or x, has all
positive (non-negative) entries and it will be called a positive (non-negative)
matrix or vector. The notation X = 0 (X < 0) or X > 0 (X = 0) indicates
that the matrix X is positive (negative) definite or positive (negative)
semi-definite. The sets of real and natural numbers are denoted by R and N,
respectively, while R denotes the set of non-negative real numbers. A square
matrix A. is said to be Hurwitz stable if all its eigenvalues lie in the open
left-half of the complex plane. A square matrix A is said to be Schur stable if
all its eigenvalues lie inside the unit disc. A matrix A is said to be Metzler (or
essentially non-negative) if all its off-diagonal elements are non-negative;
moreover, we say that the diagonal entries are non-positive, with at least one
negative diagonal entry. A matrix B is an M-matrix if B = —A, where A is
both Metzler and Hurwitz; if an M-matrix is invertible, then its inverse is
non-negative [BER 94]. The matrix [ will be the identity matrix of
appropriate dimensions. Finally, we denote with M. the set of Hurwitz stable
Metzler matrices, and with M ; the set of Schur stable non-negative matrices.
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1.2. Discretization of switched positive systems via Padé transformations

This section is a summary of the recent work described in [ZAP 12] and
some other related papers. The interested reader is referred to [ZAP 12] for
proofs and examples. Concerning the problem of obtaining a discrete-time
approximation [1.2] to system [1.1], the Padé approximation can be used,
where h is the sampling time. The [L/M] order Padé approximation to the
exponential function e® is the rational function C',5s defined by:

Crm(s) = QrL(s)Qy/ (—3),

where

Zlks Qum(s kas

_ LMk ML+ M- k)
ET T MR = k) T T (L M)IRI(M = k)

Thus, given a matrix A, the diagonal Padé approximant to the matrix
exponential eA" with sampling time A is given by taking L = M = p

Cp(Ah) = Qp(Ah)Q;I(“Ah)a

where Q,(Ah) = Y°7_, cx(Ah)* and ¢, = %. It is known that
diagonal Padé approximations map the open left-half of the complex plane to
the interior of the unit disc, and hence are A-stable [BUT 02].

1.2.1. Preservation of copositive Lyapunov functions

Recently, it was shown in [SAJ 11] that quadratic Lyapunov functions are
preserved for sets of matrices that arise in the study of systems of the form of
equation [1.1]. We now ask whether copositive Lyapunov functions are
preserved when discretizing an LTI positive system using Padé-like
approximations. Since trajectories of positive systems are constrained to lie in
the positive orthant, the stability of these systems is completely captured by
Lyapunov functions whose derivative is decreasing for all such positive
trajectories. Such functions are referred to as copositive Lyapunov functions.
With this background in mind, we observe the following elementary result.



