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Preface

Following our first book on biosurfactants (Biosurfactants and Biotechnology,
Marcel Dekker, 1987), this pook further expands this exciting and relatively new
field of biotechnology. In the last five years, interest in and active rescarch on, as
well as applications of, biosurfactants, have increased. Although initial interest
and applications were primarily in the area of petroleum engineering and
enhanced oil recovery, new applications in medicine and industry have evolved.
Because of their advantages over synthetic surfactants, biosurfactants are also of
increasing interest in cosmetics, foods, environmental control and abatement, and
in any industry where surface-active phenomena play a role in processing and
product formulation.

The 17 chapters in this book have been written by leadmg international
authorities on these topics, representing the state of the art. Further potential
applications of biosurfactants are shown in a variety of processes and products. In

this respect, this book is an excellent resource for both research and development
and industrial use.

Biosurfactants have also found wide and excellent application in environmental
management, as they have been demonstrated to help and enhance biodegradation
of toxic pollutants in water and soil. At the present time not much information is
available in the literature, but there is a solid indication that many private com-
panies are actively pursuing research in this direction, as well as in applications of
biosurfactants in cosmetics and foods. One can predict with confidence that the
application of biosurfactants in these areas will be further enhanced in the future.

At this stage, biosurfactants as high-value biotechnological products have been
fully recognized worldwide. It took about 25 years to reach this state, after the
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. INTRODUCTION

Biosurfactants display a range of structures but have the common ability to cause
emulsification of oil-water mixtures. Accordingly, biosurfactants must be able to
dissolve, at least partially, in both water and a water-immiscible liquid, thereby
effecting a decreased surface tension enabling mixing and microsolubilization
(i.e., emulsification) to occur. The range of biological components that are avail-
able as building blocks for any biosurfactant is limited. They may vary from
components that are wholly water-soluble but have no solubility in oil to those that
are virtually water-insoluble but can, and do, dissolve in any oil or lipid material.

Biological molecules of the first'category include the carbohydrates, especially
the mono- and disaccharides. Also in this category are the polyols that are derived
from the carbohydrates, as well as a number of the hydrophilic amino acids,
for example, glutamate, aspartate, lysine, ornithine, and arginine. One should
also include the principal nucleotide bases—guanine, cytosine, adenine, and
thymine—but, although these are water-soluble, they do not appear to be used in
any of the biosurfactants whose structure has been established. Peptides consisting
primarily of hydrophilic amino acids are also water soluble and the acids asso-
ciated with the tricarboxylic acid cycle are strongly water-soluble biological
molecules. The tricarboxylic acid, citric acid, is of course produced from Asper-
gillus niger on a commercial scale and processes for the production of the
dicarboxylic acids, fumaric acid, and malic acid also exist but have limited
commercial productions [1]. Biosurfactants based on them or related acids have
yet to be reported through chemically produced compounds, such as tributylcitrate
[ 1] are clearly useful in the surfactant industry.

3 24
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[1] [2]
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For water-insoluble biomolecules, the range naturally includes all of the
microbial lipids whose molecular complexities go from those based on fatty acids
to those based on isoprenoid structures, for example, sterols, terpenes, carotenes,
and polyprenols [2]. Although terpenoid compounds are not known to be involved
in any of the molecules usually considered as biosurfactants, it should be pointed
out that taurocholic acid [ 2 ] which is derived from the triterpene, cholesterol, and
the amine, taurine is the lipoidal emulsificant used in mammalian lipid metab-
olism to effect the dispersion of fatty materials in aqueous environments. Such
biosurfactants, although adequately produced in animals as a bile acid, do not
appear to have any microbial counterpart that has so far been identified as a
lipid-emulsifying agent. However, also included here are the hydrophobic amino
acids, such as phenylalanine, leucine, isoleucine, valine, and alanine, which have
only a very limited solubility in water. Polypeptides that have a predominance of
such residues also have limited solubilities in water with a concomitant increase in
their ability to associate with lipids especially at lipid-water interfaces, where
biosurfactants exert their greater influence.

A biosurfactant is usually found to be a combination of water-soluble and
water-insoluble components, thus enabling it to associate at any water—oil inter-
face so that mutual solubilization or emulsification may begin. Although at first
inspection one may be surprised at the apparently large range of biosurfactants,
the number in fact is somewhat limited as the range of water-soluble to water-
insoluble components found in nature is far greater than those actually used by
microorganisms. Perhaps as progress continues to be made, we may see new
biosurfactants emerging that do incorporate some of the molecules mentioned
above that have not yet been implicated as components of microbial surfactants.

In this chapter, we give the pathways of biosynthesis for the principal com-
ponents of microbial surfactants: fatty acids and related components including the
various long-chain acylated components, the carbohydrates and polyol moietics of
the glycolipids, and the amino acids used in a number of different ways both as
water-soluble entities and as water-insoluble moieties. Greater detail concerning
the range of microbial lipids, which are constituents of most biosurfactants, are
found in the book on this subject edited by Ratledge and Wilkinson [2], although
briefer accounts by Weete [3], Harwood and Russell [4], and Gurr and Harwood
[5] may be equally useful.

Il. BIOSYNTHESIS OF FATTY ACIDS FROM GLUCOSE

Microbial fatty acids are usually of a narrow range of chain lengths, Ci6 and Cys,
with relatively small amounts of shorter (Ci2 and Cj4) and longer (Cao) acids.
Although the biosynthesis of fatty acids is similar in all biological systems, there
are important differences between some bacterial systems and those of eukaryotic
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microorganisms (yeasts and molds). It is this difference that then accounts for the
difference in how unsaturated fatty acids are synthesized in the two systems and
why the resulting unsaturated Cig fatty acids are not the same. Bacteria usually
produce 18:1 (c11),” cis-vaccenic acid, whereas yeasts and molds and all other
living cells, produce oleic acid, 18:1 (¢9). These differences occur because of the
organization of the enzymes making up the individual fatty acid synthetase com-
plexes. In all cases, however, fatty acid biosynthesis begins with acetyl-coenzyme
A (acetyl-CoA). As this is the key intermediate for fatty acid biosynthesis and
also, via formation of mevalonic acid, for the biosynthesis of all the terpenoid
lipids, it is important to consider the metabolic origins of this molecule.

A. Formation of Acetyl-CoA

In baeteria, there is no mitochondrion and consequently acetyl-CoA is formed
directly in the cell compartment (the cytoplasm) from pyruvate (the end-product
of glucose metabolism) by pyruvate dehydrogenase:

Pyruvate + NAD"* + CoA — acetyl-CoA + CO; + NADH 1)

In eukaryotic microorganisms, that is yeasts and molds, pyruvate dehydrogenase
is a mitochondrial enzyme and thus, although pyruvate can enter the mito-
chondrion, its product, acetyl-CoA, cannot leave because its molecular size is too
large. As fatty acid biosynthesis takes place inthe cytoplasm (as in bacteria) there
has to be some mechanism for acetyl units to be translocated from inside the
mitochondrian into the main cell compartment.

Two principal routes for translocation of acetyl units occur in yeasts and molds:

1. The carnitine acetyl transferase (CAT) route. This system appears to occur in
all yeasts and molds. No exceptions have yet been reported. CAT catalyzes the
reversible formation of acetyl-carnitine:

Acetyl-CoA + carnitine — acetyl carnitine + CoA 2

Acetyl-carnitine, being smaller than acetyl-CoA, is readily transported across the
mitochondrial membrane. The reverse of reaction 2 then occurs in the cytoplasm
to regenerate acetyl-CoA.

* The standard nomenclature for lipids is used throughout this chapter. Thus, for example, 18:1 (c11)
refers to a fatty acid having 18-carbon atoms and one double bond; the position of the double bond is
then denoted by enumerating the first C atom, starting at the carboxyl end, of the bond and, where
needed, whether this is cis (c) or trans (t). Thus 18:1 (c11) refers to cis-vaccenic acid. Branched-chain
fatty acids are designated by br, although if the branching is at the -1 or w-2 C atoms these acids are
referred to as iso and anteiso acids, respectively. Cyclopropane or cyclopropene rings are designated
by cye. [A fuller discussion and description of microbial fatty acids may be found in Refs. 2-4.]




