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Preface to the English Translation

The proposal of translating this book into English came from Dr. Sonke Adlung of
OUP, to whom we express our gratitude. The translation was preceded by hard work
to produce a new version of the Italian text incorporating some modifications we had
agreed upon with Dr. Adlung (for instance the inclusion of worked out problems
at the end of each chapter). The result was the second Italian edition (Bollati-
Boringhieri, 2002), which was the original source for the translation. However,
thanks to the kind collaboration of the translator, Dr. Beatrice Pelloni, in the
course of the translation we introduced some further improvements with the aim of
better fulfilling the original aim of this book: to explain analytical mechanics (which
includes some very complex topics) with mathematical rigour using nothing more
than the notions of plain calculus. For this reason the book should be readable by
undergraduate students, although it contains some rather advanced material which
makes it suitable also for courses of higher level mathematics and physics.

Despite the size of the book, or rather because of it, conciseness has been a
constant concern of the authors. The book is large because it deals not only with
the basic notions of analytical mechanics, but also with some of its main applica-
tions: astronomy, statistical mechanics, continuum mechanics and (very briefly)
field theory.

The book has been conceived in such a way that it can be used at different levels:
for instance the two chapters on statistical mechanics can be read, skipping the
chapter on ergodic theory, etc. The book has been used in various Italian universities
for more than ten years and we have been very pleased by the reactions of colleagues
and students. Therefore we are confident that the translation can prove to be useful.

Antonio Fasano

Stefano Marmi
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1 GEOMETRIC AND KINEMATIC FOUNDATIONS
OF LAGRANGIAN MECHANICS

Geometry is the art of deriving good reasoning from badly drawn pictures'

The first step in the construction of a mathematical model for studying the
motion of a system consisting of a certain number of points is necessarily the
investigation of its geometrical properties. Such properties depend on the possible
presence of limitations (constraints) imposed on the position of each single point
with respect to a given reference frame. For a one-point system, it is intuitively
clear what it means for the system to be constrained to lie on a curve or on a
surface, and how this constraint limits the possible motions of the point. The
geometric and hence the kinematic description of the system becomes much more
complicated when the system contains two or more points, mutually constrained;
an example is the case when the distance between each pair of points in the
system is fixed. The correct set-up of the framework for studying this problem
requires that one first considers some fundamental geometrical properties; the
study of these properties is the subject of this chapter.

1.1 Curves in the plane

Curves in the plane can be thought of as level sets of functions F : U — R
(for our purposes, it is sufficient for F to be of class €?), where U is an open
connected subset of R?. The curve C is defined as the set

C = {(z1,z2) € U|F(z1,x2) = 0}. (1.1)

We assume that this set is non-empty.

DEFINITION 1.1 A point P on the curve (hence such that F(xy,22) = 0) is called
non-singular if the gradient of F' computed at P is non-zero:

VF(.T],IQ) #O (12)

A curve C whose points are all non-singular is called a reqular curve. [ ]
By the implicit function theorem, if P is non-singular, in a neighbourhood of P
the curve is representable as the graph of a function zo = f(zy), if (0F/dx2)p # 0,

! Anonymous quotation, in Felix Klein, Vorlesungen iiber die Entwicklung der Mathematik
im 19. Jahrhundert, Springer-Verlag, Berlin 1926.



2 Geometric and kinematic foundations of Lagrangian mechanics 1.1

or of a function z; = f(x2), if (0F/0x1)p # 0. The function f is differentiable
in the same neighbourhood. If x5 is the dependent variable, for z; in a suitable
open interval I,

C = graph (f) = {(z1,22) € R?*|z; € I, x5 = f(z1)}, (1.3)
and
’ o 8F/8x1
F(@) = =55 /am,

Equation (1.3) implies that, at least locally, the points of the curve are in
one-to-one correspondence with the values of one of the Cartesian coordinates.

More generally, it is possible to use a parametric representation (of class (‘32)
x : (a,b) — R2, where (a,b) is an open interval in R:

C =x((a,b)) = {(z1,22) € R?|there exists t € (a,b), (z1,z2) =x(t)}. (1.4)

Note that the graph (1.3) can be interpreted as the parametrisation x(t) =
(t, f(t)), and that it is possible to go from (1.3) to (1.4) introducing a function
z1 = x1(t) of class € and such that &;(t) # 0.

It follows that Definition 1.1 is equivalent to the following.

DEFINITION 1.2 If the curve C is given in the parametric form x = x(t), a point
x(to) is called non-singular if x(to) # 0. [

The tangent line at a non-singular point Xo = x(t9) can be defined as the
first-order term in the series expansion of the difference x(t) —xo ~ (t — to)%(to),
i.e. as the best linear approximation to the curve in the neighbourhood of xq.

X2

X

Fig. 1.1
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Since x-VF(x(t)) = 0, the vector x(t9), which characterises the tangent line and
can be called the velocity on the curve, is orthogonal to VF(xq) (Fig. 1.1).

Example 1.1

A circle 2?2 + 23 — R? = 0 centred at the origin and of radius R is a regular
curve, and can be represented parametrically as 7 = R cost, zo = Rsin t;
alternatively, if one restricts to the half-plane zo > 0, it can be represented as
the graph x5 = /1 — x?. The circle of radius 1 is usually denoted S! or T!. m

Ezample 1.2
Conic sections are the level sets of the second-order polynomials F(z1,z2). The
ellipse (with reference to the principal axes) is defined by

2 2
Ty | I3 _
StE-1=0,

where a > b > 0 denote the lengths of the semi-axes. One easily verifies that
such a level set is a regular curve and that a parametric representation is given
by x; = a sin t, xo = b cos t. Similarly, the hyperbola is given by

A_%_q1-9
a b2

and admits the parametric representation x; = a cosh t, xo = bsinh t. The
parabola o — ax? — br; — ¢ = 0 is already given in the form of a graph. ]

Remark 1.1
In an analogous way one can define the curves in R"™ (cf. Giusti 1989) as
maps X : (a,b) — R™ of class @?, where (a,b) is an open interval in R. The
vector x(t) = (&i(t),...,2,(t)) can be interpreted as the velocity of a point
moving in space according to x = x(t) (i.e. along the parametrised curve).

The concept of curve can be generalised in various ways; as an example, when
considering the kinematics of rigid bodies, we shall introduce ‘curves’ defined in
the space of matrices, see Examples 1.27 and 1.28 in this chapter. [ ]

1.2 Length of a curve and natural parametrisation

Let C be a regular curve, described by the parametric representation x = x(t).

DEFINITION 1.3 The length | of the curve x = x(t), t € (a,b), is given by the
integral

b b
z:/ \/:'c(t)-ic(t)dt:/ %(t)| dt. (1.5)
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In the particular case of a graph z» = f(z;), equation (1.5) becomes

b
z:/ VITFORdt. (1.6)

Ezample 1.3
Consider a circle of radius r. Since [x(t)| = |[(—r sin t,r cos t)| = r, we have
[ = 02” rdt = 27r. [
Ezample 1.4

The length of an ellipse with semi-axes a > b is given by

2r /2 2 _ p2
l= \/a2coszt+bzsin2tdt:4a/ \/l—aa2 sin? t dt
0 0

2 _ 2
=4aE( 8 2b>=4aE(e),
a

where E is the complete elliptic integral of the second kind (cf. Appendix 2) and
e is the ellipse eccentricity. [ |

Remark 1.2

The length of a curve does not depend on the particular choice of parametrisation.
Indeed, let 7 be a new parameter; t = t(7) is a €2 function such that dt/dr # 0,
and hence invertible. The curve x(¢) can thus be represented by

with t € (a,b), 7 € (a’,b'), and t(a’) = a, t(b') = b (if t'(7) > 0; the opposite case
is completely analogous). It follows that

lz/ablic(t)ldt:/:

Any differentiable, non-singular curve admits a natural parametrisation with
respect to a parameter s (called the arc length, or natural parameter). Indeed,
it is sufficient to endow the curve with a positive orientation, to fix an origin O
on it, and to use for every point P on the curve the length s of the arc OP
(measured with the appropriate sign and with respect to a fixed unit measure)
as a coordinate of the point on the curve:

dx dt Y| dy
S e[| ar= [

i (7)| dr. ™

s(t) = i/o' ix(r)| dr (1.7)
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A

X

P(s)

Xy

Fig. 1.2

(the choice of sign depends on the orientation given to the curve, see Fig. 1.2).
Note that [$(t)| = |x(t)| # 0.

Considering the natural parametrisation, we deduce from the previous remark
the identity

?ldx
S—/O E dG',
which yields
dx
T (s)| =1 for all s. (1.8)

Ezample 1.5
For an ellipse of semi-axes a > b, the natural parameter is given by

¢ 212
s(t) = / Va2 cos? 7 + b2 sin® 7dr = 4aE (t, aa—2b>
0 V

(cf. Appendix 2 for the definition of E(t,e)). ]

Remark 1.3

If the curve is of class C', but the velocity X is zero somewhere, it is possible
that there exist singular points, i.e. points in whose neighbourhoods the curve
cannot be expressed as the graph of a function zo = f(z,) (or z; = g(x2)) of
class @', or else for which the tangent direction is not uniquely defined. [ ]

Ezample 1.6
Let x(t) = (x1(t), z2(t)) be the curve

—t4, if t <0,
“(t):{ 1 if £ >0,

I2(t) = t27



