] T \; oy S | ; (’ 2 ' '*i fi ;‘\:'/\
4 \31 C!Z"

Té@ae
" : le 1o
Ran Libeskind-Hadas ifzile?ei“feeeﬂeé

EI“
COMPUTING
FOR BIOLOGISTS

Python Programming and Principles 0 b

(Y

s L = \JA
o Py~ ’ & 3 il SV @\ P G
(O 4 /\"LA [y o T A A~ - T | = b(w S = CGT{:f\/\

for Biologists

Python Programming and Principles

Ran Libeskind-Hadas

Department of Computer Science,
Harvey Mudd College

Eliot Bush

Department of Biology,
Harvey Mudd College

ﬁ:ﬁ CAMBRIDGE
9

5 F5 UNIVERSITY PRESS

CAMBRIDGE

UNIVERSITY PRESS
University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of
education, learning and rescarch at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107042827

© R. Libeskind-Hadas and E. Bush 2014

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 2014
Printed in the United States of America by Sheridan Books, Inc.
A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data
Libeskind-Hadas, Ran.
Computing for biologists / Ran Libeskind-Hadas, Department of Computer Science, Harvey Mudd College,
Eliot Bush, Department of Biology, Harvey Mudd College.
pages cm
Includes index.
ISBN 978-1-107-04282-7 (Hardback) - ISBN 978-1-107-64218-8 (Paperback)
1. Biology-Data processing. 2. Python (Computer program language) 3. Computer programming.
I. Bush, Eliot Christen. 1I. Title.
QH324.2.153 2014
570.285-dc23 2014014322

ISBN 978-1-107-04282-7 Hardback
ISBN 978-1-107-64218-8 Paperback

Additional resources for this publication at www.cambridge.org/c4b

Cambridge University Press has no responsibility for the persistence or accuracy of
URLSs for external or third-party internet websites referred to in this publication,
and does not guarantee that any content on such websites is, or will remain,
accurate or appropriate.

Computing for Biologists

Python Programming and Principles

Computing is revolutionizing the practice of biology. This book, which assumes no prior
computing experience, provides students with the tools to write their own Python pro-
grams and to understand fundamental concepts in computational biology and
bioinformatics.

Each major part of the book begins with a compelling biological question, followed by
the algorithmic ideas and programming tools necessary to explore it: the origins of
pathogenicity are examined using gene finding, the evolutionary history of sex determin-
ation systems is studied using sequence alignment, and the origin of modern humans is
addressed using phylogenetic methods. In addition to providing general programming
skills, this book explores the design of efficient algorithms, simulation, NP-hardness, and
the maximum likelihood method, among other key concepts and methods.

Easy-to-read and designed to equip students with the skills to write programs for solving
a range of biological problems, the book is accompanied by numerous programming
exercises, available at www.cs.hme.edu/CFB.

Ran Libeskind-Hadas is the R. Michael Shanahan Professor of Computer Science at Harvey
Mudd College, USA, working in the areas of algorithms and computational biology. He isa
recipient of both the Iris and Howard Critchell Professorship and the Joseph B. Platt
Professorship for teaching, as well as the Distinguished Alumni Educator Award from the
University of Illinois Urbana-Champaign Department of Computer Science.

Eliot Bush is Associate Professor of Biology at Harvey Mudd College, USA. His main
research interest is the study of evolution. Among other things he has modeled the
evolution of metabolism, characterized DNA methylation patterns in insects, developed
algorithms for studying substitution bias in DNA, and analyzed a 30 million-year-old
primate fossil. His teaching interests focus on incorporating computers and programming
assignments into biology coursework.

Computing

PREFACE
What's this book about?

The computer is the most powerful general-purpose tool available to biologists.

In part, this is due to the continuing rapid growth of biological data. For
example, at the time of writing, the GenBank database had over 100 million
genetic sequences with over 100 billion DNA characters. Among the contents of
that database are genes from many organisms, annotated with what's known about
their function.

Imagine that you're studying a bacterium and wish to understand what causes it
to be infectious. One promising approach is to identify genes in the bacterium and
compare these to known genes in GenBank. If you're able to find similar genes
whose function is known, it will tell you a great deal about the role of the genes in
your bacterium. This approach represents a computational challenge, and is, in
fact, the topic of Part I of this book.

But searching enormous databases is not the only reason that computers are so
useful to biologists. Many biological problems have a large number of different
possible solutions and only a computer - programmed with carefully designed
computational recipes or “algorithms™ - has any chance of finding the right one.
For example, biological molecules such as proteins and RNA fold into complex
shapes that strongly impact their function. Computational techniques have been
developed to predict how these molecules fold. Such techniques help us understand
how proteins and RNA work and can even help us design new molecules to treat
disease.

Simply put, computing is revolutionizing the practice of biology.

In order to fully appreciate and exploit the power of computation, biologists
must be trained to “think™ computationally. In practical terms, this means under-
standing fundamental computing concepts that recur in many applications and
being able to write programs.

Why? Consider, for example, that there are well over 400 different software
packages for phylogenetics (the study of the evolutionary relationships among
organisms). An increasing level of computational sophistication is needed to select

the appropriate software for a given application, use it correctly, and understand its

PREFACE

abilities and limitations. This is true not just of phylogenetics, but also for many
other areas of biology.

But using existing software will not be enough. The number and variety of
computational problems that arise in biology are rapidly outpacing the function-
ality of software tools. Eventually, most biologists are likely to encounter problems
that cannot be solved with existing software. Therefore, it is imperative for
biologists to have the ability to write their own programs.

This book seeks to provide biology students with both an exposure to major
computational ideas and practical programming skills. It requires no specific
biology or computer science background. It is designed as a first-year college-level
course and has been taught to that audience at Harvey Mudd College since 2009.
The authors hereby acknowledge the generous grant support of HHMI for the
development of that course.

In contrast to a typical introductory bioinformatics book, this book emphasizes
programming over the use of existing software. By the time you've completed this
book, and the online homework problems, you should feel comfortable writing
programs for a wide array of applications in biology and beyond. You'll also have
an understanding of computational ideas like “heuristics,” “memoization” and
“dynamic programming,” “NP-completeness,” and others, that will allow you to
understand and compare the technical aspects of existing bioinformatics tools.

This book begins with Chapter 0, which offers a first introduction to the Python
programming language. The rest of the book is organized into four parts, each
comprising several chapters. Each part begins with a “large™ biological question
and the chapters in that part provide the computational and programming tools to
answer that question.

At the end of each chapter - and sometimes even within a chapter - you'll see a
question icon pointing you to one or more recommended problems. You'll find
those problems at the url:

www.cs.hmc.edu/CFB

Let’s get started!

CONTENTS

Preface page ix

0.1 Getting Started 1
0.2 Big Numbers 3
0.3 Strange Division 3
0.4 Naming Things 4
0.5 What's in a Name? 6
0.6 From Numbers to Strings. . . 6
0.7 Slicing 8
0.8 Adding Strings 9
0.9 Negative Indices 10
0.10 Fancy Slicing 10
0.11 And Now to Lists. .. 11
0.12 Lists for Free! 13
0.13 Changing Values 14
0.14 More on Mutability 17
0.15 Booleans 18
Putting it All Together 21
Part | Python versus Pathogens 23
1 Computing GC Content 25
1.1 Representing DNA on a Computer 26
1.2 Python Functions 26
1.3 A Short Comment on Docstrings 28
1.4 Bigger and Better Functions 28
1.5 Why Write Functions? 29
1.6 Making Decisions 29
1.7 A Potential Pitfall 32
1.8 GC Content of Strings of Length 1, 2, 3, or 4: if, elif, else 34
1.9 Oops! 36

1.10 The “Perfect” GC Content Function: for Loops 38

CONTENTS

1.11 Another Example of for Loops: Converting DNA to RNA
Putting it All Together

Pathogenicity Islands

2.1 How Salmonella Enters Host Cells
2.2 Investigating Pathogenicity Islands
2.3 Looping Over Lists

2.4 Looping Over Lists with range

2.5 From Gum to CAT Boxes

2.6 Functions Can Call Other Functions!
Putting it All Together

Open Reading Frames and Genes

3.1 Open Reading Frames and the Central Dogma
3.2 GC Content and ORFs

3.3 The countStarts Function

3.4 The genString Function

3.5 while Loops and Population Genetics

Putting it All Together

Finding Genes (at last!)

4.1 From ORFs to Genes

4.2 Genes Occur on Both Strands

4.3 Determining the Function of a Protein
Putting it All Together

Part Il Sequence Alignment and Sex Determination

5

Recursion

5.1 A Brief Diversion Before Recursion
5.2 And Now For Recursion!

5.3 The Factorial Function

5.4 How to Write a Recursive Function
5.5 Another Example: Recursive Reverse
Putting it All Together

The Use-It-Or-Lose-It Principle

6.1 Peptide Fragments
6.2 Making Change

39
40

41

M
43
44
45
47
49
52

53

53
54
56
57
59
64

65
65
67
67
69

71

75
76
77
80
82
85
85

87

87
92

CONTENTS

6.3 Longest Common Subsequence 96
Putting it All Together 99
7 Dictionaries, Memoization, and Speed 100
7.1 Dictionaries 101
7.2 Using a Dictionary 102
7.3 What Kinds of Things Can be Keys and Values? 103
7.4 Optional Section: How Dictionaries Work (and why you should care) 105
7.5 Memoization 109
7.6 Memoizing LCS 113
Putting it All Together 115

8 Sequence Alignment and the Evolution of Sex Chromosomes 116

8.1 The Sequence Alignment Score 116
8.2 From Scores to Alignments 121
8.3 Sequence Alignment Scoring with Variable Rewards and Penalties 123
8.4 Optional Section: How Substitution Matrices are Computed 126
8.5 Optional Section: Getting the Actual Sequence Alignment 129
8.6 Identifying Orthologs 135
8.7 Comparing Chromosomes 136
Putting it All Together 138

Part 11l Phlyogenetic Reconstruction and the Origin

of Modern Humans 141
9 Representing and Working with Trees 145
9.1 Representing Trees 146
9.2 Computing with Trees 148
Putting it All Together 152
10 Drawing Trees 154
10.1 Drawing Fractal Trees 158
10.2 Drawing Phylogenetic Trees 159
Putting it All Together 162
11 The UPGMA Algorithm 163
11.1 The Algorithm 164
11.2 Implementing UPGMA in Python 169
11.3 Calibrating Trees 171

Putting it All Together 172

viii

CONTENTS

Part IV Additional Topics

12

49

13

RNA Seconda

o D
UEne Regutdatory iNetw

R o o AA~4% H
Likelihood Method

Putting it All Together

= | D

piras, bees, and LUe
14.1 Fast Algorithms
14.2 Slow Algorithms
14.3 Genetic Algorithms

195

198
199
201

206

One way that you can spot a computer scientist is that they begin counting from
0 rather than from 1. So this is Chapter 0. But it’s also Chapter 0 to signify that it's a
warm-up chapter to get you on the path to feeling comfortable with Python, the
programming language that we'll be using in this book. Every subsequent chapter
will begin with an application in biology followed by the computer science ideas
that we'll need to solve that problem.

Python is a programming language that, according to its designers, aims to
combine “remarkable power with very clear syntax.” Indeed, Python programs
tend to be relatively short and easy to read. Perhaps for this reason, Python is
growing rapidly in popularity among computer scientists, biologists, and others.

The best way to learn to program is to experiment! Therefore, we strongly urge
you to pause frequently as you read this book and try some of the things that
we're doing here (and experiment with variations) in Python. It will make the
reading more fun and meaningful.

This chapter includes a number of short exercises that we encourage you to try.
Subsequent chapters have links to end-of-chapter programming problems.

The link below offers instructions on how to install and run Python on your

computer.
www.cs . hmec.edu/CFB/Setup

If you're reading this book as a part of a course, your instructor may have some

additional or different instructions.

0.1 Getting Started
When you start up Python, you'll see a “prompt” that looks like this:

>>>

MEET PYTHON

You can type commands at the prompt and then press the "Return” (or “Enter”) key
and Python will interpret what we've typed.

For example, below we've typed 3 + 5 (throughout this book, the user's input is
always shown in black and Python’s response is always shown in blue).

>>> 3 + 5

Next, we can do fancier things like this:

>>> (3 4+45) *2 -1

Notice that parentheses were used here to control the order of operations.
Normally, multiplication and division have higher precedence than addition and
subtraction, meaning that Python does multiplications and divisions first and
addition and subtractions afterwards. So without parentheses we would have
gotten. . .

s> 3 # 5% 2 =1

You can always use parentheses to specify the order of operations that you
desire.
Here are a few more examples of arithmetic in Python:

>>>6 /2

>>> 2 %% 5

>>> 10 %% 3

>>> 52 % 10

You may have inferred what /, ++, and % do. Arithmetic symbols like +, -, /,
#, +x, and % are called operators. The % operator is pronounced “mod” and it
gives the remainder that results when the first number is divided by the

second one.

0.3 STRANGE DIVISION

0.2 Big Numbers
Python is not intimidated by big numbers. For example:

>>3 2 %% 100

The “L" at the end of that number stands for “Long.” It's just Python's way of

telling you that the number is big. Look at this:

>>> (2 %% 100) % 3

The number 1 is not long, but 2 ++ 100 was long; once Python sees a mathematical
expression with a long number in it, it stays in the long number state of mind. You
don’t have to worry about that — we just note this so you won't say “Huh!?” when

you see the “L."

0.3 Strange Division
If you're using Python version 3, division works as you'd expect.

s> 5 1 2

If you're using Python version 2 (e.g., version 2.7), the way it works may surprise

you. Take a look at this:

>>>5 /2

We've consulted with expert mathematicians and they've verified that 5 divided
by 2 is not 2! What's wrong with Python!? The answer is that Python (version 2) is
doing “integer division”. It assumes that since 5 and 2 are integers, you are only
interested in integers. So when it divides 5 by 2, it rounds down to the nearest
integer, which is 2. If you wanted Python to do “decimal division”, you could do

this:

>>>5.0/2.0

MEET PYTHON

Since we typed 5.0 and 2.0, Python realized that we are interested in numbers
with decimal points, not just integers, so it gave us the answer with a decimal
point. In fact, if just ONE of the 5 or 2 has a decimal point after it, Python will get
the message that we are thinking about decimal numbers. So we could do any

of these:

>>>5.0/ 2
s»» 5 f 2.0
>>> 5. /2

>>>5 /2.

0.4 Naming Things

Python lets you give names to values. This is very useful because it allows you to
compute a value, give it a name, and then use it by name in the future. Here's an

example:

>>> myNumber = 42

>>> myNumber * (10 #* 2)

In the first line, we defined myNumber to be 42. In the second line, we used that value
as part of a computation. The name myNumber is called a variable in computer
science. It's simply a name that we've made up and we can assign values to it.
Notice that the "=" sign is used to make an assignment. On the left of the equal
sign is the name of the variable. On the right of the equal sign is an expression that
Python evaluates, assigning the resulting value to the variable. For example, we

can do something like this:

>>>pl = 3.1415926
>>> area = pi * (10 ** 2)

>>> area

0.4 NAMING THINGS

In this case, we define the value of pi in the first line. In the second line, the
expression pi = (10 #+ 2) is evaluated (its value is 314.15926) and that value is
assigned to another variable called area. Finally, when we type area, Python
displays the value. Notice, also, that the parentheses aren’t actually necessary here.
However, we used them just to help remind us which operations will be done first.
It's often a good idea to do things like this to make your code more readable to
other humans.

One last thing before we move on. In mathematics, the expression pi =
3.1415926 is equivalent to the expression 3.1415926 = pi. In Python, and in
almost all programming languages, these are not the same! In fact, while Python
understands pi = 3.1415926 it will complain loudly if you type 3.1415926 = pi.
(Try it in Python to see what it looks like when Python complains.) Didn’t Python
go to elementary school? The answer is that programming languages view the =
symbol in a special way. They assume that what's on the left-hand side is the name
of a variable (pi in our example). On the right-hand side of = is an expression that
can be evaluated. That expression is evaluated and its value is then associated with
the variable.

So, when Python sees. . .
>>>pi = 3.1415926

. it evaluates the expression on the right. That's easy, there’s nothing to evalu-
ate — it’s 3.1415926. Python then assigns that value to the variable pi on the left.

Now, when Python sces. . .
>>> area = pi * (10 #x* 2)

. it evaluates the expression on the right. That's not too hard either; we've
already defined pi to be 3.1415926 and Python does the math and evaluates the
expression on the right to be 314.15926. It then associates that value with the
variable named area.

Sometimes, you'll see (and write) things like this:

>>> countexr = 0

>>> counter = counter + 1

In the first line, we've set a variable named counter to 0. The second line makes
no sense from a mathematical perspective, but it makes complete sense based on

MEET PYTHON

what we now know about Python. Python begins by evaluating the expression
on the right side of the = sign. Since counter is currently 0, that expression
counter + 1 evaluates to 1. Only once this evaluation is done, Python sets the
variable on the left side of the = sign to be this value. So now counter is set to 1.
This is how we'll often count the number of events of some sort - like the number
of occurrences of a particular nucleotide in a DNA sequence or the number of
species with a particular property.

0.5 What's in a Name?

Variable names are pretty much up to you. We didn’'t have to use the names
myNumber, pi, and area in our examples above. We could have called them Joe,
sally, and Melissa if we preferred. Variable names must begin with a letter and
there are certain symbols that aren’t permitted in a variable name. For example.
naming a variable Joe or Joe4z2 is fine, but naming it Joe+sally is not permitted.
You can probably imagine why. If Python sees Joe+sally it will think that you are
trying to add the values of two variables Joe and sally. Similarly, there are a few
built-in Python “special words” that can’t be used as a variable name. If you try to
use them, Python will give you an error message. (An error message is the technical
term for a complaint.)

Finally, it's a good practice to use descriptive variable names to help the reader
understand your program. For example, if a variable is going to store the area of a
circle, calling that variable area is a much better choice than calling it something
like z or y42b or harriet.

Variables provide a convenient way to store values and the names that we give to

variables should be simple and descriptive.

0.6 From Numbers to Strings...

That was all good, but numbers are not the only useful kind of data. Python allows
us to define strings as well. A string is any sequence of symbols within either single

or double quotation marks. Here are some examples:

>>> namel = "Ben"

>>> name2 = 'Jerry'

