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Preface

This book presents the data structures and algorithms that underpin much of
today’s computer programming. The basis of this book is the material con-
tained in the first six chapters of our earlier work, The Design and Analysis of
Computer Algorithms. We have expanded that coverage and have added
material on algorithms for external storage and memory management. As a
consequence, this book should be suitable as a text for a first course on data
structures and algorithms. The only prerequisite we assume is familiarity with
some high-level programming language such as Pascal.

We have attempted to cover data structures and algorithms in the broader
context of solving problems using computers. We use abstract data types
informally in the description and implementation of algorithms. Although
abstract data types are only starting to appear in widely available program-
ming languages, we feel they are a useful tool in designing programs, no
matter what the language.

We also introduce the ideas of step counting and time complexity as an
integral part of the problem solving process. This decision reflects our long-
held belief that programmers are going to continue to tackle problems of pro-
gressively larger size as machines get faster, and that consequently the time
complexity of algorithms will become of even greater importance, rather than
of less importance, as new generations of hardware become available.

The Presentation of Algorithms

We have used the conventions of Pascal to describe our algorithms and data
structures primarily because Pascal is so widely known. Initially we present
several of our algorithms both abstractly and as Pascal programs, because we
feel it is important to run the gamut of the problem solving process from prob-
lem formulation to a running program. The algorithms we present, however,
can be readily implemented in any high-level programming language.

Use of the Book

Chapter 1 contains introductory remarks, including an explanation of our view
of the problem-to-program process and the role of abstract data types in that
process. Also appearing is an introduction to step counting and ‘‘big-oh” and
“big-omega’’ notation.

Chapter 2 introduces the.traditional list, stack and queue structures, and
the mapping, which is an abstract data type based on the mathematical notion
of a function. The third chapter introduces trees and the basic data structures
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that can be used to support various operations on trees efficiently.

Chapters 4 and 5 introduce a number of important abstract data types that
are based on the mathematical model of a set. Dictionaries and priority
queues are covered in depth. Standard implementations for these concepts,
including hash tables, binary search trees, partially ordered trees, tries, and
2-3 trees are covered, with the more advanced material clustered in Chapter 5.

Chapters 6 and 7 cover graphs, with directed graphs in Chapter 6 and
undirected graphs in 7. These chapters begin a section of the book devoted
more to issues of algorithms than data structures, although we do discuss the
basics of data structures suitable for representing graphs. A number of impor-
tant graph algorithms are presented, including depth-first search, finding
minimal spanning trees, shortest paths, and maximal matchings.

Chapter 8 is devoted to the principal internal sorting algorithms: quick-
sort, heapsort, binsort, and the simpler, less efficient methods such as inser-
tion sort. In this chapter we also cover the linear-time algorithms for finding
medians and other order statistics.

Chapter 9 discusses the asymptotic analysis of recursive procedures,
including, of course, recurrence relations and techniques for solving them.

Chapter 10 outlines the important techniques for designing algorithms,
including divide-and-conquer, dynamic programming, local search algorithms,
and various forms of organized tree searching.

The last two chapters are devoted to external storage organization and
memory management. Chapter 11 covers external sorting and large-scale
storage organization, including B-trees and index structures.

Chapter 12 contains material on memory management, divided into four
subareas, depending on whether allocations involve fixed or varying sized
blocks, and whether the freeing of blocks takes place by explicit program
action or implicitly when garbage collection occurs.

Material from this book has been used by the authors in data structures
and algorithms courses at Columbia, Cornell, and Stanford, at both undergra-
duate and graduate levels. For example, a preliminary version of this book
was used at Stanford in a 10-week course on data structures, taught to a popu-
lation consisting primarily of Juniors through first-year graduate students.
The coverage was limited to Chapters 1-4, 9, 10, and 12, with parts of 5-7.

Exercises

A number of exercises of varying degrees of difficulty are found at the end of
each chapter. Many of these are fairly straightforward tests of the mastery of
the material of the chapter. Some exercises require more thought, and these
have been singly starred. Doubly starred exercises are harder still, and are
suitable for more advanced courses. The bibliographic notes at the end of
each chapter provide references for additional reading.
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CHAPTER 1

Design and
Analysis of
Algorithms

There are many steps involved in writing a computer program to solve a given
problem. The steps go from problem formulation and specification, to design
of the solution, to implementation, testing and documentation, and finally to
evaluation of the solution. This chapter outlines our approach to these steps.
Subsequent chapters discuss the algorithms and data structures that are the
building blocks of most computer programs.

1.1 From Problems to Programs

Half the battle is knowing what problem to solve. When initially approached,
most problems have no simple, precise specification. In fact, certain prob-
lems, such as creating a “‘gourmet” recipe or preserving world peace, may be
impossible to formulate in terms that admit of a computer solution. Even if
we suspect our problem can be solved on a computer, there is usually consid-
erable latitude in several problem parameters. Often it is only by experimen-
tation that reasonable values for these parameters can be found.

If certain aspects of a problem can be expressed in terms of a formal
model, it is usually beneficial to do so, for once a problem is formalized, we
can look for solutions in terms of a precise model and determine whether a
program already exists to solve that problem. Even if there is no existing pro-
gram, at least we can discover what is known about this model and use the
properties of the model to help construct a good solution.

Almost any branch of mathematics or science can be called into service to
help model some problem domain. Problems essentially numerical in nature
can be modeled by such common mathematical concepts as simultaneous linear
equations (e.g., finding currents in electrical circuits, or finding stresses in
frames made of connected beams) or differential equations (e.g., predicting
population growth or the rate at which chemicals will react). Symbol and text
processing problems can be modeled by character strings and formal gram-
mars. Problems of this nature include compilation (the translation of pro-
grams written in a programming language into machine language) and infor-
mation retrieval tasks such as recognizing particular words in lists of titles
owned by a library.
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Algorithms

Once we have a suitable mathematical model for our problem, we can attempt
to find a solution in terms of that model. Our initial goal is to find a solution
in the form of an algorithm, which is a finite sequence of instructions, each of
which has a clear meaning and can be performed with a finite amount of
effort in a finite length of time. An integer assignment statement such as
x:=y + z is an example of an instruction that can be executed in a finite
amount of effort. In an algorithm instructions can be executed any number of
times, provided the instructions themselves indicate the repetition. However,
we require that, no matter what the input values may be, an algorithm ter-
minate after executing a finite number of instructions. Thus, a program is an
algorithm as long as it never enters an infinite loop on any input.

There is one aspect of this definition of an algorithm that needs some clar-
ification. We said each instruction of an algorithm must have a ‘‘clear mean-
ing” and must be executable with a “finite amount of effort.” Now what is
clear to one person may not be clear to another, and it is often difficult to
prove rigorously that an instruction can be carried out in a finite amount of
time. It is often difficult as well to prove that on any input, a sequence of
instructions terminates, even if we understand clearly what each instruction
means. By argument and counterargument, however, agreement can usually
be reached as to whether a sequence of instructions constitutes an algorithm.
The burden of proof lies with the person claiming to have an algorithm. In
Section 1.5 we discuss how to estimate the running time of common program-
ming language constructs that can be shown to require a finite amount of time
for their execution.

In addition to using Pascal programs as algorithms, we shall often present
algorithms using a pseudo-language that is a combination of the constructs of a
programming language together with informal English statements. We shall
use Pascal as the programming language, but almost any common program-
ming language could be used in place of Pascal for the algorithms we shall dis-
cuss. The following example illustrates many of the steps in our approach to
writing a computer program.

Example 1.1. A mathematical model can be used to help design a traffic light
for a complicated intersection of roads. To construct the pattern of lights, we
shall create a program that takes as input a set of permitted turns at an inter-
section (continuing straight on a road is a “turn™) and partitions this set into
as few groups as possible such that all turns in a group are simultaneously per-
missible without collisions. We shall then associate a phase of the traffic light
with each group in the partition. By finding a partition with the smallest
number of groups, we can construct a traffic light with the smallest number of
phases.

For example, the intersection shown in Fig. 1.1 occurs by a watering hole
called JoJo's near Princeton University, and it has been known to cause some
navigational difficulty, especially on the return trip. Roads C and E are one-
way, the others two way. There are 13 turns one might make at this
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intersection. Some pairs of turns, like AB (from A to B) and EC, can be car-
ried out simultaneously, while others, like AD and EB, cause lines of traffic to
cross and therefore cannot be carried out simultaneously. The light at the
intersection must permit turns in such an order that AD and EB are never per-
mitted at the same time, while the light might permit AB and EC to be made
simultaneously.

D E

Fig. 1.1. An intersection.

We can model this problem with a mathematical structure known as a
graph. A graph consists of a set of points called vertices, and lines connecting
the points, called edges. For the traffic intersection problem we can draw a
graph whose vertices represent turns and whose edges connect pairs of vertices
whose turns cannot be performed simultaneously. For the intersection of Fig.
1.1, this graph is shown in Fig. 1.2, and in Fig. 1.3 we see another represen-
tation of this graph as a table with a 1 in row i and column j whenever there
is an edge between vertices i and j.

The graph can aid us in solving the traffic light design problem. A color-
ing of a graph is an assignment of a color to each vertex of the graph so that
no two vertices connected by an edge have the same color. It is not hard to
see that our problem is one of coloring the graph of incompatible turns using
as few colors as possible.

The problem of coloring graphs has been studied for many decades, and
the theory of algorithms tells us a lot about this problem. Unfortunately,
coloring an arbitrary graph with as few colors as possible is one of a large
class of problems called “NP-complete problems,” for which all known solu-
tions are essentially of the type *‘try all possibilities.” In the case of the color-
ing problem, “try all possibilities” means to try all assignments of colors to
vertices using at first one color, then two colors, then three, and so on, until a
legal coloring is found. With care, we can be a little speedicr than this, but it
is generally believed that no algorithm to solve this problem can be substan-
tially more efficient than this most obvious approach.

We are now confronted with the possibility that finding an optimal solu-
tion for the problem at hand is computationally very expensive. We can adopt
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Fig. 1.2. Graph showing incompatible turns.

AB AC AD BA BC BD DA DB DC EFEA EB EC ED

1

1
1

1
1

1
1
1

Fig. 1.3. Table of incompatible turns.
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one of three approaches. If the graph is small, we might attempt to find an
optimal solution exhaustively, trying all possibilities. This approach, however,
becomes prohibitively expensive for large graphs, no matter how efficient we
try to make the program. A second approach would be to look for additional
information about the problem at hand. It may turn out that the graph has
some special properties, which make it unnecessary to try all possibilities in
finding an optimal solution. The third approach is to change the problem a
little and look for a good but not necessarily optimal solution. We might be
happy with a solution that gets close to the minimum number of colors on
small graphs, and works quickly, since most intersections are not even as com-
plex as Fig. 1.1. An algorithm that quickly produces good but not necessarily
optimal solutions is called a heuristic.

One reasonable heuristic for graph coloring is the following ‘“‘greedy”
algorithm. Initially we try to color as many vertices as possible with the first
color, then as many as possible of the uncolored vertices with the second
color, and so on. To color vertices with a new color, we perform the follow-
ing steps.

1. Select some uncolored vertex and color it with the new color.
2. Scan the list of uncolored vertices. For each uncolored vertex, determine
whether it has an edge to any vertex already colored with the new color.

If there is no such edge, color the present vertex with the new color.

This approach is called *‘greedy” because it colors a vertex whenever it
can, without considering the potential drawbacks inherent in making such a
move. There are situations where we could color more vertices with one color
if we were less “‘greedy” and skipped some vertex we could legally color. For
example, consider the graph of Fig. 1.4, where having colored vertex 1 red,
we can color vertices 3 and 4 red also, provided we do not color 2 first. The
greedy algorithm would tell us to color 1 and 2 red, assuming we considered
vertices in numerical order.

Fig. 1.4. A graph.

As an example of the greedy approach applied to Fig. 1.2, suppose we
start by coloring AB blue. We can color AC, AD, and BA blue, because none
of these four vertices has an edge in common. We cannot color BC blue
because there is an edge between AB and BC. Similarly, we cannot color BD,
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DA, or DB blue because each of these vertices is connected by an edge to one
or more vertices already colored blue. However, we can color DC blue.
Then EA, EB, and EC cannot be colored blue, but ED can.

Now we start a second color, say by coloring BC red. BD can be colored
red, but DA cannot, because of the edge between BD and DA. Similarly, DB
cannot be colored red, and DC is already blue, but EA can be colored red.
Each other uncolored vertex has an edge to a red vertex, so no other vertex
can be colored red.

The remaining uncolored vertices are DA, DB, EB, and EC. If we color
DA green, then DB can be colored green, but EB and EC cannot. These two
may be colored with a fourth color, say yellow. The colors are summarized in
Fig. 1.5. The “extra” turns are determined by the greedy approach to be
compatible with the turns already given that color, as well as with each other.
When the traffic light allows turns of one color, it can also allow the extra
turns safely.

color turns extras

blue AB, AC, AD, BA, DC, ED —

red BC, BD, EA BA, DC, ED
green DA, DB AD, BA, DC, ED
yellow EB, EC BA, DC, EA, ED

Fig. 1.5. A coloring of the graph of Fig. 1.2.

The greedy approach does not always use the minimum possible number
of colors. We can use the theory of algorithms again to evaluate the goodness
of the solution produced. In graph theory, a k-cligue is a set of k vertices,
every pair of which is connected by an edge. Obviously, k colors are needed
to color a k-clique, since no two vertices in a clique may be given the same
color.

In the graph of Fig. 1.2 the set of four vertices AC, DA, BD, EB is a 4-
clique. Therefore, no coloring with three or fewer colors exists, and the solu-
tion of Fig. 1.5 is optimal in the sense that it uses the fewest colors possible.
In terms of our original problem, no traffic light for the intersection of Fig.
1.1 can have fewer than four phases.

Therefore, consider a traffic light controller based on Fig. 1.5, where each
phase of the controller corresponds to a color. At each phase the turns indi-
cated by the row of the table corresponding to that color are permitted, and
the other turns are forbidden. This pattern uses as few phases as possible. O



1.1 FROM PROBLEMS TO PROGRAMS 7

Pseudo-Language and Stepwise Refinement

Once we have an appropriate mathematical model for a problem, we can for-
mulate an algorithm in terms of that model. The initial versions of the algo-
rithm are often couched in general statements that will have to be refined sub-
sequently into smaller, more definite instructions. For example, we described
the greedy graph coloring algorithm in terms such as ‘“‘select some uncolored
vertex.”” These instructions are, we hope, sufficiently clear that the reader
grasps our intent. To convert such an informal algorithm to a program, how-
ever, we must go through several stages of formalization (called stepwise
refinement) until we arrive at a program the meaning of whose steps are for-
mally defined by a language manual.

Example 1.2, Let us take the greedy algorithm for graph coloring part of the
way towards a Pascal program. In what follows, we assume there is a graph
G, some of whose vertices may be colored. The following program greedy
determines a set of vertices called newclr, all of which can be colored with a
new color. The program is called repeatedly, until all vertices are colored.
At a coarse level, we might specify greedy in pseudo-language as in Fig. 1.6.

procedure greedy ( var G: GRAPH; var newcir: SET );
{ greedy assigns to newclr a set of vertices of G that may be
given the same color }

begin
n newclr ;= &; t
) for each uncolored vertex v of G do
3) if v is not adjacent to any vertex in newcir then begin
(4) mark v colored;
(&) add v to newclir

end
end; { greedy }

Fig. 1.6. First refinement of greedy algorithm.

We notice from Fig. 1.6 certain salient features of our pseudo-language.
First, we use boldface lower case keywords corresponding to Pascal reserved
words, with the same meaning as in standard Pascal. Upper case types such
as GRAPH and SETf} are the names of ‘“abstract data types.” They will be
defined by Pascal type definitions and the operations associated with these
abstract data types will be defined by Pascal procedures when we create the
final program. We shall discuss abstract data types in more detail in the next
two sections.

The flow-of-control constructs of Pascal, like if, for, and while, are

 The symbol 3 stands for the empty set.
¥ We distinguish the abstract data type SET from the built-in set type of Pascal.



