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Preface

This monograph is devoted to the development of a mathematical theory of elasticity
of quasicrystals and its applications. Some results on elastodynamics and plasticity
of quasicrystals are also included to document preliminary advances in recent years.

The first quasicrystal was observed in 1982 and reported in November 1984. At
that time several physical and mathematical theories for quasicrystal study already
existed. Soon after the discovery, the theory of elasticity of quasicrystals was put
forward. Based on Landau-Anderson symmetry-breaking, a new elementary exci-
tation - the phason - was introduced in addition to the well known phonon. The
phason concept was suggested in the 1960’s in incommensurate phase theory. Group
theory and discrete geometry e.g. the Penrose tiling provide further explanations
to quasicrystals and their elasticity from the standpoint of algebra and geometry.
The phonon and phason elementary excitations form the basis of the theory of elas-
ticity of this new solid phase. Many theoretical (condensed matter) physicists have
spent a great deal of effort on constructing the fundamental physical framework of
the theory of elasticity of quasicrystals. Applications of group theory and group
representation theory further enhance the physical basis of the description. On the
basis of the physical framework and by extending the methodology of mathematical
physics and classical elasticity, the mathematical theory of elasticity of quasicrystals
has been developed. Recent studies on the elasto-/hydro-dynamics and the plastic-
ity of quasicrystals have made preliminary but significant progress. As regards the
dynamics, there are various viewpoints in the quasicrystal community, which reveal
the unusual characteristics of phason dynamics. Yet the effect of the phason de-
grees of freedom on plastic deformation is not well understood, and the basic plastic
properties of the material are virtually unknown. Because of many unsolved critical
issues, the study of quasicrystals has attracted many researchers. The contex of the
last few chapters in this book is a probe of the fascinating research area.

As this book is focused on the mathematical theory of elasticity of quasicrystals,
it does not include in-depth discussions on the physics of the phason degrees of
freedom and the physical nature of the phason variables. These research subjects
are important to the quasicrystal study.

I sincerely thank the National Natural Science Foundation of China and the
Alexander von Humboldt Foundation of Germany for their support over the years.
I also thank Professors Fanghua Li (Institute of Physics in the Chinese Academy of
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Science), Longan Ying (School of Mathematics of Peking University), Dihua Ding
(Department of Physics, Wuhan University), Jiann-Quo Tarn (Cheng Kung Uni-
versity / Zhejiang University), Weigiu Chen (Zhejiang University), Qingping Sun
(Hong Kong Science and Technology University), U. Messerschmidt (Max Planck
Institut fuer Mikrostruktur Physik, Halle), H.-R. Trebin (Institut fuer Theoretis-
che und Angewandte Physik, Universitaet Stuttgart), and K. Edagawa (University
of Tokyo) for their helpful discussions. Last but not least, I thank my co-workers
and former and present students, especially Professor Xianfang Li (Central South
University), for their help and contributions.

Tianyou Fan
January 2010, Beijing
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Chapter 1
Crystals

This book discusses mainly elasticity and defects of quasicrystals, however qua-
sicrystals have inherent connection with crystals. This chapter provides the basic
knowledge on crystals which may be beneficial to study quasicrystals and relevant
topics.

1.1 Periodicity of crystal structure, crystal cell

Based on X-ray diffraction patterns, it is known that a crystal consists of particles
(i.e., collections of ions, atoms and molecules) which are arranged regularly in space.
The arrangement is a repetition of the smallest unit, called a unit cell, resulting in the
periodicity of a complete crystal. The frame of the periodic arrangement of centres of
gravity of particles is called a lattice. Thus, the properties of corresponding points
of different cells in a crystal are the same. The positions of these points can be

defined by the radius vectors » and =’ in the coordinate frame e1, ez, €3, and a, b
and ¢ are three non-mutually co-linear vectors, respectively (the general concept on

vector refering to Chapter 2). Hence we have
v =r +la+ mb+nc, (1.1-1)
in which a, b and c are the basic translational vectors describing the particle arrange-
ment in a complete crystal, and I,m and n are arbitrary integers. If the physical
properties are described by function f(r), the above invariance can be expressed
mathematically as
f(@') = f(r +la + mb+ nc) = f(r). (1.1-2)
This is called the translational symmetry or long-range translational order of a crys-
tal, because the symmetry is realized by the operation of translation.
Formula (1.1-1) represents a kind of translational transform, while (1.1-2) shows
that the lattice is invariant under transformation (1.1-1). The collection of all trans-
lational transform remaining lattice invariant constitutes the translational group.

1.2 Three-dimensional lattice types

Cells of lattice may be described by a parallel hexahedron having lengths of its
three sides @,b and ¢ and angles @, 8 and v between the sides. According to the
relationship of length of sides and angles there are seven different forms observed for
the cells, which form seven crystal systems given in Table 1.2-1.
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Table 1.2-1 Crystals and the relationship of the length of sides and angles

Crystal system Characters of cell

Triclinic a#tbfca#£pP#y
Monoclinic aZzb#ca=7y=90°#4
Orthorhombic a#xb#ca=LF=~v=090°
Rhombohedral a=b=ca=0=-3#00°
Tetragonal a=b#cou=F=~y=90°

Hexagonal a=b+#c,a=06=90°y=120°
Cubic a=b=ca=0=v=90°

Among each crystal system there are certain classes of crystals that are classified
based on the configuration such that whether the face centre or body centre contains
lattice point. For example, the cubic system can be classified as three classes: the
simple cubic, body centre cubic and face centre cubic. According to this classifica-
tion, the seven crystal systems contain 14 different lattice types, called Bravais cells

as shown in Fig. 1.2-1.

<y x ; o
(

Il c ’
~JC, ]
\’ Y 4" c
21> 116 ga a
A
73 A Wil a
® (g) @ 8)
c \81 c a0 :
‘‘la la (&1, [
a i a a \q a l

(k) U (m) (n)
Fig. 1.2-1 The 14 Crystal cells of three-dimension
(a) Simple triclinic, (b) Simple monoclinic, (c) Button centre monoclinic,
(d) Simple orthorhombic, (e) Button centre orthorhombic, (f) Body centre orthorhombic,
(g) Face centre orthorhombic, (h) Hexagonal, (i) Rhombohedral,
(§) Simple tetragonal, (k) Body centre tetragonal, (1) Simple cubic,
(m) Body centre cubic, (n) Face centre cubic.

Apart from the above mentioned 14 Bravais cells with three-dimensional lattices,
there are 5 Bravais cells of two-dimensional lattice, we do not go any further.
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1.3 Symmetry and point groups

In Section 1.1 we have discussed the translational symmetry of crystals. Here we
point out that the symmetry reveals invariance of crystals under translational trans-
formation

T =la+mb+ne. (1.3-1)

Formula (1.3-1) is referred to as an operation of symmetry, which is a translational
operation. Apart from this, there are rotation operation and reflection (or mapping)
operation, they belong to so-called point operation. A brief introduction on the
rotation operation and orientational symmetry of crystals is given below.

By rotating about an axis through a lattice, the crystal always returns to the orig-
inal state since the rotational angles are 2m/1,2x/2,2x/3,2n/4 and 2m/6
or integer times of these values. This is the
orientational symmetry or the long-range
orientational order of a crystal. Because
of the constraint of translational symme-
try, the orientational symmetry holds for
n = 1,2,3,4 and 6 only, which is neither
equal to 5 nor more greater than 6 where n
is the denominator of 2m/n (e.g. a molecule
can have five-fold rotation symmetry, but
a crystal cannot have this symmetry be-
cause the cells either overlap or have gaps : p—
between them when n = 5, Fig. 1.3-1 is an Fig.1.3-1 There is no five-fold rotational
example). The fact constitutes the follow- symmetry in crystals
ing fundamental law of crystallography:

Law of symmetry of crystals Under rotation operation, n-fold symmetry

axis is marked by n. Due to the constraint of translational symmetry, there are axes
n=1,2,3,4 and 6 exist only, neither 5 nor number greater than 6 exists.

In contrast to translational symmetry, rotation is a point symmetry. Other point
symmetries are: plane of symmetry, the corresponding operation is mapping, marked
by m; centre of symmetry, the corresponding operation is inversion, marked by I;
rotation-inversion axis, the corresponding operation is composition of rotation and
inversion, when the inversion after rotation 2m/n, marked by 7.

For crystals, the point operation consists of eight independent ones only, i.e.,

1,2,3,4,6, I=(I), m=24, (1.3-2)
which are the basic symmetric elements of point symmetry.
The rotation operation is also denoted by C,,,n=1,2,3,4, 6.
The mapping operation can also be expressed by o. The horizontal mapping by
myp, and S, the vertical one by 5.
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The mapping-rotation is a composite operation, denoted by S,,, which can be
understood as
Sp = Crop = onCy.

The inversion can be understood as

I: SQ = CQ(Th = UhCz.

Another composite operation—rotation-inversion 7. is related to S,, eg. 1 =
Sg ZI, §= Sl =0’,3= SG;Z: S4,6= 53.
So that (1.3-2) can be redescribed as

CI’C2703aC4,061]v0-754- (13-3)

The collection of each symmetric operation among these eight basic operations con-
stitutes a point group, the collection of their composition forms 32 point groups
listed in Table 1.3-1.

Table 1.3-1 32 Point groups of crystals

Sign Meaning of sign Point group Number
Cn Having n-fold axis C1,C2,C3,C4,Cs 5
I Symmetry central I(7) 1
o(m) Mapping a(m) 1
Having n-fold axis and
Onh horizontgal syminetry plane C2h, C3h, Can, Con 4
Cw Having n-fold axis and Cav,Cay, Cay, Co 4
vertical symmetry plane
D, Having n-fold a.xi's and n 2-fold axes, D2, D3, D4, Dg 4
they are perpendicular to each other
Do, Mes:r;r;ga:szfz:he D3, D3py Dany Den 4
d means in Dy there is a
Dpa symmetry plane dividing Dag, D3q 2
the angle between two 2-fold axes
S, Having n-fold S4, 86 = Cia 2
mapping-rotation axis
T Having four 3-fold axes and T 1
three 2-fold axes
Meaning of h is the
T same as before Th 1
T, Meaning of d is the T, 1
same as previous
Having three 4-fold axes
O which perpendicular to each other and six 0,0 2
2-fold axes and four 3-fold axes

Note: T = Cy D2 means the composition between operations C3 and Dg, where suffixes 3’
denotes a 3-fold axis.

O = CygC4Cyrr means the composition between operations Cy/, C4 and Cyr, where 3’ repre-
sents a 3-fold axis, 2" represents a 2-fold axis.
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The concept and sign of point groups will be used in the subsequent chapters.

1.4 Reciprocal lattice

The concept of the reciprocal lattice will be concerned in the subsequent chapters,
here is a brief introduction.

Assume that there is relation between the base vectors a1, as and as of a lattice
(L) and the base vectors by, by and bs for another lattice (Lg)

{ 1, = Js .
bi-aj :(5,53‘ = Z,j= 1,2,3, (14-1)
0, @# 7,

such that the lattice with the base vectors {b1, b, bz} is the reciprocal lattice Lg of
crystal lattice L with the base vectors {a,,az,a3}. Between b; and a; there exist
the relationship

az X as az X ai a1 X asg
bj=—7—, bpb=——— by3=——"F-= 1.4-2
1 Q b] 2 0 ? 3 Q 7 ( )
where 2 = a; + (a2 x a3) is the volume of lattice cell.
Denote
2" = by - (b2 x bs),
then
1
==
1
The position of any point in the reciprocal lattice can be expressed by
G = h1b; + hoby + habj (1.4—3)

in which G called the reciprocal vector and
hi,hg,hy = £1,%2,- -

Points in the lattice can be described by a1, a2, a3 as well as by by, by, bs.

In a similar fashion the concept of the reciprocal lattice can be extended to
the higher dimensional space, e.g. six-dimensional space, which will be used in the
discussion in Chapter 4.

The brief introduction above provides a background for reading the subsequent
text of the book. Further information on the crystals, the diffraction theory, and
the point groups can be found in books[l, 2]. We will recall the concepts in the
following text.
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1.5 Appendix of Chapter 1: Some basic concepts

Some basic concepts will be described in the following chapters, with which most
of physicists are familiar. For the readers of non-physicists, a simple introduction is
provided as follows; the details can be found in the relevant references.

1.5.1 Concept of phonon

In general, the course of crystallography does not contain the contents given in this
section. Because the discussion here is dependent on quasicrystals, especially with
the elasticity of quasicrystals, we have to introduce some of the simplest relevant
arguments.

In 1900, Planck put forward the quantum theory. Soon after Einstein developed
the theory and explained the photo-electric effect, which leads to the photon concept.
Einstein also studied the specific heat ¢, of crystals by using the Planck quantum
theory. There are some unsatisfactory points in the work of Einstein although his
formula explained the phenomenon of ¢, = 0 at T = 0, where T denotes the absolute
temperature. To improve Einstein’s work, Debyel®! and Born et al. 45 applied the
quantum theory to study the specific heat arising from lattice vibration in 1912 and
1913 respectively, and got a great success. The theoretical prediction is in excellent
agreement to the experimental results, at least for the atom crystals.

The propagation of the lattice vibration is called the lattice wave. Under the
long-wavelength approximation, the lattice vibration can be seen as continuum elas-
tic vibration, i.e., the lattice wave can be approximately seen as the continuum
elastic wave. The motion is a mechanical motion, but Debye and Born assumed
that the energy can be quantized based on Planck’s hypothesis. With the elastic
wave approximation and quantization, Debye and Born successfully explained the
specific heat of crystals at low temperature, and the theoretical prediction is con-
sistent with the experimental results in all range of temperature, at least for the
atomic crystals. The quanta of the elastic vibration, or the smallest unit of energy
of the elastic wave is named phonon, because the elastic wave is one of acoustic
waves. Unlike photon, the phonon is not an elementary particle, but in the sense of
quantization, the phonon presents natural similarity to that of photon and other ele-
mentary particles, thus can be named quasi-particle. The concept created by Debye
and Born opened the study on lattice dynamics, an important branch of solid state
physics. Yet according to the view point at present, the Debye and Born theory on
solid belongs to a phenomenological theory, though they used the classical quantum
theory.

Landaul® further developed the phenomenological theory and put forward the
concept of elementary excitation. According to his concept, photon and phonon etc.
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belong to elementary excitations. In general one elementary excitation corresponds
to a certain field, e.g. photon corresponds to electro-magnetic wave, phonon cor-
responds to elastic wave, etc. The phonon concept is further extended by Bornl®l;
he pointed out the phonon theory given by Debye corresponds to the vibration as
molecule as a whole body, which is called phonetic frequency vibration modes, or
the phonetic branch of phonon. In this case the physical quantity phonon describ-
ing displacement field deviated from the equilibrium position of particles (atoms,
or ions, or molecules) at lattice is also called as phonon field, or briefly phonon.
Macroscopically it is the displacement vector w of elastic body (if the crystal is re-
garded as an elastic body). But Born emphasized that there is another vibration in
crystals with compound lattice, i.e., the relative vibration between atoms within a
molecule, which is called photonic frequency vibration modes, or photonic branch of
phonon. For this branch the phonon cannot be understood simply as macroscopic
displacement field. But our discussion here is confined to the frame work of contin-
uum medium, with no concern with the photonic branch, so the phonon field is the
macro-displacement field in the consideration.

In many physical systems (classical or quantum systems) the motion presents
the discrete spectrum (the energy spectrum or frequency spectrum, which corre-
sponds to the discrete spectrum of an eigen-value problem of a certain operator
from the mathematical point of view), the lowest energy (frequency) level state is
called ground state, and that beyond the ground state is called excited state. The
so-called elementary excitation induces a transfer from the ground state to the state
with the smallest non-zero energy (or frequency). Strictly speaking, it should be
named lowest energy {or frequency) elementary excitation.

The solid state physics was intensively developed in 1960~70’s, then evolved into
the condensed matter physics. The condensed matter physics is not only extending
the scope of solid state physics by considering the liquid state and micro-powder
structure, but also developing the basic concepts and principles. Modern condensed
matter physics is established as a result of the construction of its paradigm, in which
the symmetry-breaking is in a central place, which was contributed by Landaul® and
Anderson!” and other scientists.

Considering the importance of the concept and principle of symmetry-breaking
in development of elasticity of quasicrystals, we give a brief discussion here.

It is well known that for a system with a constant volume, the equilibrium state
thermodynamically requires the free energy of the system

F=E-TS (1.5-1)

be minimum, in which E is the internal energy, S is the entropy and T is the absolute
temperature.



