2962

EXPERIMENTS WITH

DAVE PROCHNOW

ADVANCED TECHNOLOGY SERIES

Experiments with EPROMS

By Dave Prochnow

TAB Books

Division of McGraw-Hill, Inc.

New York San Francisco Washington, D.C. Auckland Bogota
Caracas Lisbon London Madrid Mexico City Milan
Montreal New Delhi SanJgan Singapore
Sydney Tokyo “Toronto

Trademark List

The following trademarked products are mentioned
in Experiments with EPROMs.

Apple Computer, Inc.: Apple Ile

Autodesk, Inc.: AutoCAD 2

Bishop Graphics, Inc.: E-Z Circuit

Wintek Corporation: HIWIRE
smARTWORK

Borland International: Turbo BASIC

MicroPro International, Inc.: WordStar

To my patient and understanding Kathy

© 1988 by TAB Books.
TAB Books is a division of McGraw-Hill, Inc.

Printed in the United States of America. All rights reserved. The publisher takes no
responsibility for the use of any of the materials or methods described in this book,
nor for the products thereof.

pbk 10 11 12 13 14 15 16 FGR/FGR 9 9 8
hc 1723 4 5 6 7 8 9 10 FGR/FGR 8 9 8

Library of Congress Cataloging-in-Publication Data

Prochnow, Dave.
Experiments with EPROMS / by Dave Prochnow.
p. cm.
Includes index.
ISBN 0-8306-0362-X ISBN 0-8306-2962-9 (pbk.)

1. Computer storage devices—Experiments. 1. Title.
TK7895.M4P76 1988
621.397'3—dc19 88-1508

CIP

Acknowledgments

Significant contributions were made by several outstanding manufacturers
during the preparation of this book. Borland International, CAD Software, Inc.,
Heath/Zenith, Kepro Circuit Systems, Inc., and Wintek Corporation all made
generous hardware and software contributions which served as important
references in developing the following text.

Introduction

EPROM programming is one of the great mysteries in advanced circuit design.
Here is a discrete, dual in-line package that is capable of holding any user-
supplied programming in a nonvolatile fashion. Furthermore, this silicon-
housed carrier can be quickly erased at the discretion of the user and
reprogrammed at a modest cost. Unfortunately, there is a fixed set of perennial
problems which continually hamper the widespread usage of EPROM
technology.

Basically, these EPROM restrictions can be broken down into three stan-
dard questions. How do | program an EPROM? How can | incorporate an
EPROM into my circuit design? And, what are my alternatives to using an
EPROM? Up until now, these questions were only answered by a select group
of individuals who had braved the uncharted reaches of EPROM program-
ming. Even their answers were far from definitive, however. Extensive
pioneering work in EPROM technology has yet to be performed at the
experimenter’s level. This is a field that is ripe for discovery.

In actual practice, the implementation of EPROMs into digital circuits is
a relatively easy task. Virtually, any design that uses microprocessor control
or requires external data for its operation can be modified or adapted to accept
EPROM programming. To achieve this desired digital memory goal, you will
need three things: an EPROM programmer, an EPROM eraser, and an extensive
guidebook. At this moment, you are holding the direct solution to the latter
requirement and the indirect answer to the previous two necessary EPROM
elements.

This book contains complete circuit information for building a number
of EPROM programmers, erasers, and dedicated projects. Each of these circuits

is based on a varying level of design need. These programmers, erasers, and
projects represent working solutions to every major EPROM usage, including
stand-alone and computer-based units. But this book doesn’t stop at hardware
answers. There is also a complete introduction into the theory of digital
circuitry and digital memory devices. Therefore, not only will you learn how
to construct several powerful EPROM programmers and erasers, but you also
receive an education in the technology of programmable memories.

Following a brief introduction into human memory, there is a complete
examination of the current state of digital memory. Once you have mastered
the basics of memory fabrication, three chapters list the major types of digital
memories that can be found on today’s market. After you have gained the
necessary background information in EPROM technology, the remainder of
this book covers the actual programming and erasing of EPROMs.

Fifteen different programmers, erasers, and EPROM-based circuits are fully
detailed in four valuable chapters. All of these projects are advanced in the
methods that they use for their construction and operation. Therefore,
beginning readers might need some background training prior to attempting
the construction of these EPROM projects. There are three appendices, how-
ever, that can guide you through many of these areas. Two important
considerations that you should make before attempting to build any of these
projects are the purchases of both a quality soldering iron and a reliable digital
logic probe. While the need for the former is obvious, you will find that the
logic probe’s ability to pinpoint logic status errors is invaluable when
troubleshooting EPROM wiring problems.

If the construction of an EPROM programmer and/or eraser doesn’t satisfy
your needs, then this book’s chapter dealing with commercial programmers
and erasers can help you explore EPROM technology. The inclusion of this
chapter expands the potential of incorporating EPROM s into your next circuit
design. Thus, you have two different methods for acquiring the benefits of
nonvolatile memory.

Finally, after all of your creative juices have been stimulated with the
knowledge of creating your own EPROM circuits, this book’s last chapter gives
a thumbnail look at alternate memory technologies. So all three of the EPROM
programming requirements have been met by this book. Both an EPROM
programmer and an EPROM eraser can either be built from the circuits that
are contained within this book or purchased from a manufacturer. Additionally,
the information in this book supplies all of the reference material that is
necessary for mastering EPROM technology. Therefore, the conclusion of this
book leaves you with only one remaining task:

54 68 61 6E 6B 73 20
66 6F 72 20
74 68 65 20
6D 65 6D 6F 72 69 65 73 2E

Contents

List of Projects
Acknowledgments
Introduction

EPROM Technology

Digital Memory e Binary Codes ® Binary Mathematics ® Binary
Logic ® Project 1: Boole’s Box ® Project 2: Keyboard Encoder

Programmable Memory Structures

Multi-bit Registers ® Digital Memory ® ROM Technology ® PROM
Technology ® EAROM Technology ® EPROM Technology ® EEPROM
Technology ® PLA Technology ® Building the X-3

Popular PROMs
Popular EEPROMs
Popular EPROMs

The Bit Smasher

EPROM Programming Considerations ® Project 3: Construction of the Bit
Smasher ® Testing the Bit Smasher ® Using the Bit Smasher e Project
4: The Bit Smasher I

vii
viii

Ix

47

65

73

79

92

7

10

11

EPROgraMmer

Project 5: Construction of the EPROgraMmer ® Testing the EPRO-
graMmer e Using the EPROgraMmer ¢ Project 6: The EPROgraMmer
Il * Project 7: The Three-Line Burner ® Project 8: The ABeEP | ® Project
9: The EPROM Program Tester ® Project 10: Building a ROM Drive

Programming an EPROM

Intel Hex ® Simple EPROM Programming ® Synthesized Speech Data
Table (Project 11: Speech Synthesizer) ® Music Data Table (Project 12:
Music Synthesizer) ® Character Data Table (Project 13: Message Cen-
ter) ® Advanced EPROM Programming

Erasing an EPROM

Erasing Mathematics ® Project 14: A 4-Watt EPROM Eraser ® Project 15:

An 8-Watt EPROM Eraser

Commercial Programmers and Erasers

The Heath ID-4801 Programmer e Building the Heath ID-4803 Eras-
er o Expanding the Heath EPROM Programmer

SAM Technology

Charge-Coupled Device ® Bubble Memory e Josephson Junction Device

A Building an EPROM Project
B IC Data Sheets
C Supply Source Guide

Glossary
Bibliography

Index

Includes list of devices mentioned in this text.

113

137

154

161

177

181

209

217

220
223
227

List of Projects

Project 1: Boole’s Box 41
Project 2: Keyboard Encoder 45
Project 3: Bit Smasher 99
Project 4: Bit Smasher Il 107
Project 5: EPROgraMmer 116
Project 6: EPROgraMmer Il 123
Project 7: Three-Line Burner 126
Project 8: ABeEP | 127
Project 9: EPROM Program Tester 130
Project 10: ROM Drive 135
Project 11: Speech Synthesizer 142
Project 12: Music Synthesizer 144
Project 13: Message Center 145
Project 14: 4-watt Eraser 157

Project 15: 8-watt Eraser 159

1

EPROM
Technology

Perform this series of three simple tests: What was the name of your
kindergarten teacher? Now, what was the name of your college advisor?
Finally, what is your social security number? How’d you do? Your ability to
correctly recall each of these answers depends largely on your command of
a relatively mysterious process which inhabits the human brain—the memory.

Memory is an ephemeral product derived from the interactions between
over 15 billion neurons inside the average human brain (see Bibliography
for further reference materials supporting this study). These interactions form
a neurochemical change that is retained over lengthy periods of time in spite
of other brain activities. There are several unknown variables in this simplified
explanation of human memory, however. For example, how are these
neuronal interactions initiated? What length of exposure is required for
commiting a name, idea, or concept to memory? And what is the duration
of a “memorized” thought?

Any study of memory must begin with the derivation of its definition.
The etymology of this noun, ““memory,” has its origin in Latin’s memoria and
memor. Complementing this literary definition, the biological derivation of
memory stems from the reactions within the single-celled neuron. This small
grayish cell is the basis for all neurological activity. Unfortunately, the action
of these neurons in the formation of memory is far more complicated.

There are two general schools of thought on the structure of the neuronal
biology of the brain. The first is the net theory of neuron placement. As
espoused by Camillo Golgi, this net theory concluded that the brain’s neurons
were all interconnected in dense, multiple layers of vast nerve cell networks.
Golgi further stated that impulses, ideas, and memory traveled this enormous

1

2 EPROM TECHNOLOGY

neuronal network similar to trains through a railway system. The complicated
mechanics of this type of structure made this theory difficult for some biologists
to swallow and alternate theories were quickly formulated.

One of these opposing views came from Ramon y Cajal of Spain. Cajal’s
theory stated that neurons were discrete individual cells with no distinct point
of articulation. In this theory, an impulse or idea travels from neuron to neuron
through a proximate space known as a synaptic cleft or synapse (see Fig. 1-1).
Therefore, Cajal’s synapse serves as a communication point between individual
neurons with impulses able to travel in any direction to any nearby neuron.
The flexible concept of synaptic communication between neurons has made
Cajal’s theory more widely accepted than Golgi’s nerve cell network theory.
Support in the scientific community can be fickle, however.

Neuron Neuron

s

Synaptic Cleft
Fig. 1-1. Diagram of a neuronal synapse in the human brain.

This point is illustrated by the 1906 Nobel Prize awards ceremony. In
1906, the Nobel Prize Committee couldn’t make a definitive decision on the
“best’”” neuronal theory. Therefore, the Nobel Prize in Medicine was awarded
to both Cajal and Golgi. In spite of this dual selection, Cajal’s theory was
quickly adopted by the medical world as the most sound explanation of
impulse and idea transmission within the human brain. An interesting footnote
to this widespread refutation of nerve network impulse conveyance is that
several new studies are now lending a degree of credence to Golgi’s theory
(see Bibliography). Who knows, maybe the Nobel Prize Committee was
correct after all in dividing the 1906 award between both Cajal and Golgi?

Restricting our neurological study to the more generally accepted Cajal
theory, there are three main components of a neuron: the cell body, the axon,
and the dendrite (see Fig. 1-2). Each of these neuronal parts serves a key role
in sending an impulse through the brain. Basically, an impulse travels from
one neuron’s axon to another cell’s dendrite. This process is carried out be-
tween any neuron across any synapse. The resultant impulse can culminate
in an action, a reflex, or an idea. But what exactly is an impulse?

Neuronal impulses are electrochemical signals that are carried along
neurons through the various axon/dendrite synaptic joints. The nature of these

EPROM TEeCHNOLOGY 3

Basal Dendrites

AN

Cell Body
N

T
Branches
Y]

b

A
Apical Dendrite

Fig. 1-2. The cellular parts of a human neuron.

impulses can be demonstrated through a simple biological experiment. By
sending a low-voltage electrical charge through the exposed nerve fibers of
a dissected frog leg, the inert leg can be made to twitch. Furthermore, the
fluid that is produced from these electrically charged nerves will cause an-
other muscular contraction when applied directly to the leg muscle. Therefore,
the sequence of events during impulse transmission consists of:

An electrical charge.

The production of a neuronal chemical.

The transmission of the neuronal chemical.

The absorption of the chemical by another neuron.
The production of an electrical charge.

G H W —

This process is repeated thousands of times until the final neuron causes the
muscle to contract.

In terms of a single neuron, this sequence is initiated in the cell body
through the production of a weak electrical current. Once this electrical charge
has been generated, the signal travels down the neuron’s axon to the synapse.
At this junction, the impulse releases special compounds in the transmitting
neuron’s cell membrane and the electrical signal is changed into a chemical
signal.

A neuron’s chemical signal is composed of neurotransmitters that float
across the synaptic cleft and latch onto another neuron’s dendrite. This
dendritic attachment selectively alters the receiving neuron’s cell membrane
and forms an electrical potential. Once again, this electrical potential travels

4 EPROM TECHNOLOGY

DIGITAL MEMORY

through the neuron, along the axon, and the entire process is repeated
thousands, millions, or billions of times for each and every impulse.

This elementary introduction into the biology of memory has some
interesting parallels in the electronics of digital memory. Like its neuronal
equivalent, digital memory can be either volatile or nonvolatile (i.e.,
permanent). Similarly, memory is conveyed as an electrical impulse in both
systems. One sharp difference between human memory and digital memory,
however, is that digital memory will never forget the name of your kindergarten
teacher; that is, not unless you erase it.

Any discussion of digital memory must begin with a solid introduction
to digital logic. By definition, digital logic is the sequence of events within
a digital circuit. This sequencing is governed by a strict application of
mathematics. Entering into this mathematical logic scheme are the two possible
conditions or states that can be present in a digital circuit: OFF or ON.

Several different names are given to this dual state depending on their
circumstances of occurrence. For example, the two conditions of a digital
signal are labeled as LOW and HIGH for the OFF and ON states, respectively.
Alternatively, in a graphics system like a computer video display, the digital
representation used for indicating the OFF and ON status of the individual
pixels found on a monitor screen is either dark or light, respectively. Finally,
in a microcomputer’s MPU (Microprocessing Unit), these OFF and ON
conditions are interpreted numerically as a 0 and a 1. This final numeric
symbolic definition is used throughout the ensuing discussions of digital log-
ic and introduction to digital memory.

These 0’s and 1’s of digital logic are manipulated with the binary or base-2
number system. Like other number systems, the selective combination of the
binary number system’s 0 and 1 can be used for expressing any numeric val-
ue. Table 1-1 compares the same sequence of values for four different number
systems. One unfortunate side effect to writing numbers in binary notation
is their unwieldy dimensions. For example, consider the following decimal
value along with its binary equivalent:

222 (decimal) = 11011110 (binary)

In this example, the binary value is a lengthy eight digits versus three digits
for the decimal representation. Therefore, a more practical means for dealing
with the binary states of digital logic is through a higher-level number system.

While the decimal or base-10 number system is more comprehensible
to the human user, the octal (base-8) and hexadecimal (base-16) number
systems mesh more easily with the digital circuit’s multiples-of-four data and
address requirements. The handling of these data and address conditions is

DiGITAL MEMORY 5

Table 1-1. Four Different Numbering Systems.

Decimal Binary Octal Hexadecimal
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 ¥4 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
16 10000 20 10

principally executed by several single-binary-digit switching circuits or through
a single multi-binary digit register. In an average digital circuit, these registers
range in size from 4 to 64 binary digits. This dependence on factors of four
makes translating between octal and hexadecimal values and binary digits
a necessary talent that must be acquired by the digital circuit designer. Even
so, the use of octal programming has recently fallen into disfavor and the
hexadecimal number system has become a veritable standard in the standard-
less microcomputer industry.

As an exercise in number system manipulation, perform the following
experiment:

Purpose: Write a decimal-to-binary conversion program.
Materials: Any microcomputer system with a high-level language interface
(e.g., BASIC, FORTRAN).

Procedure:

< Make your program short with a limited number of jumps or GOTO
statements.

< Your program should be able to calculate any bit-size binary value.

% Test your final program with known binary numbers and compare your
achieved results with your acquired results.

6 EPROM TECHNOLOGY

=

o
|-

-~

B

DI = N R

- -l
AR AR AN

el e S W08 B B Y
o
)

DO R

Results:

< This is one possible solution to this experiment in BASIC:

REM BIMARY CALCULATOR FROGRAM
IMFUT ¢ ¢ HOW MAMY DIGITS **s R
E-G:C-8:D0-8:Z-8:FPRIMT * *EMTER YOUR** ;A * ¢ -DIGIT
HARY HUMEER® * : IMPUT QE#F
I-A-1
FORE-1TOA

IF MIDFCREFsBal0-f¢1** THEMLET C=2D:2-2+C:D-D-1
IF MIDFCREFBal0-f¢@** THEMLET C=8:2-2+C:D-0-1
HE=T E
FRIMT QE$: ¢ -*?
FREIMT TRECA+12 &

B IMPUT D0 AMOTHER: ¥ OR M 7 * * 2 X%

B IF “F=-¢¢%** THEM GOTO 1@

B IF “F=¢%H** THEH EHD

B IF B¥<> %" OR B¥F<>¢¢H** THEH GOTO 186

< After you have completed this experiment, add an octal and hexadecimal
conversion option to your final program.

Referring to a register size as multi-binary digit can be almost as
cumbersome as writing large binary numbers. Therefore, another means for
expressing binary digits is with bits. A bit can equal either a 0 ora 1. Applying
this definition to the previously mentioned 8-digit binary number example
11011110 yields an 8-bit number. When dealing with register bit size, how-
ever, the final register value can represent the computational strength of a
microcomputer.

At the heart (or brain) of every microcomputer is the MPU. This single
chip or IC (integrated circuit) is the repository of the CPU’s registers. Based
on the bit width of these registers, the data handling ability of the MPU can
be fairly judged (or can it?). Unfortunately, not all registers are created equal
and many MPUs are difficult to pigeonhole into an accurate statement of their
true computing power.

Take the Motorola MC68000 MPU, for example. The MC68000 has 32-bit
internal registers, but this same MPU also has a 16-bit data bus, a 23-bit address
bus, and a 16-bit ALU (arithmetic logic unit). Furthermore, this IC is able to
address 16M bytes of unsegmented memory with a 32-bit program counter.
So where does this mixed bag of bit width leave us? Granted, the MC68000
can handle 32-bit-sized instructions, internally. On the other hand, it can only

DIGITAL MEMORY 7

receive data in 16-bit slices. Therefore, the MC68000 is best classified as a
16/32-bit MPU.

Another MPU that falls into this dual personality mold is the Intel 8088.
The 8088 is best labeled an 8/16-bit MPU. In this case, there are 16-bit internal
registers with an 8-bit data bus, a 20-bit address bus, and 16-bit instruction
pointer (the function of the instruction pointer is similar to the role of the
program counter in the MC68000). Additionally, the ALU is 16 bits wide.
Once again, however, the 16-bit 8088’s ability to receive data in 8-bit pieces
mandates the 8/16-bit qualifier in describing its computational strength.

In addition to describing the amount of data that can be processed, the
bit size of a register also indicates the number of logical states that are possible.
All possible logic states for two different registers are listed in Table 1-2. Based
on the states listed in these two examples, an X-bit register will contain 2*
logic states.

Table 1-2. Register Logic States.

2-bit Register

bit 1 bit 0
0 0
0 1
1 0
1 1

3-bit Register

bit 2 bit 1 bit 0
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Yet another means for expressing the computational strength of a
microcomputer is in its CPU’s (central processing unit) memory size. Memo-
ry size is usually measured in 8-bit segments. Each 8-bit chunk is defined as
a byte. Bytes, in turn, are frequently described in terms of kilobytes (K bytes),
megabytes (M bytes), and gigabytes (G bytes). A 1K-byte CPU memory is equal

8 EPROM TECHNOLOGY

to 2'° or 1024 bytes. This same 1K-byte CPU memory also contains 8192
bits (8 X 1024 bytes). Continuing with these equivalencies:

1M bytes
1G bytes

21 or 1,048,576 bytes
21000 or 1,073,741,824 bytes

In turn, these same values equal:

1M bytes
1G bytes

8,388,608 bits
8,589,934,592 bits

Bit strings of a byte’s width are also useful for indicating the CPU’s status.
Depending on its register location, a byte can have a variety of different
meanings.

For example,
00111111

is equal to,
63 (decimal)
3F (hexadecimal)

77 (octal)

and can represent the 8088 instruction code AAS. This code is a mnemonic
representation of “ASCII adjust for subtraction.” The use of the term ASCII
points to another possible interpretation of this byte. ASCIl (American Stand-
ard Code for Information Interchange) is a coding system that uses 7 bits of
data for describing alphabetic, numeric, and punctuation characters in a digital
circuit. Continuing with our previously mentioned byte,

00111111

represents the ASCII character
?

Another alphanumeric character description code is EBCDIC (Extended
Binary Coded Decimal Interchange Code). This code is used primarily on
mainframe IBM systems such as the IBM 360/370. In addition to being
restricted to mainframe usage, EBCDIC data is 8 bits wide. Therefore, the byte
00111111 is equal to the EBCDIC control character SUB or substitute.

