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Markov Chains and Dependability Theory

Dependability metrics are omnipresent in every engineering field, from simple ones
to more complex measures combining performance and dependability aspects of sys-
tems. This book presents the mathematical basis of the analysis of these metrics in the
most used framework, Markov models, describing both basic results and specialized
techniques.

The authors first present both discrete and continuous-time Markov chains before
focusing on dependability measures, which necessitate the study of Markov chains on
a subset of states representing different user satisfaction levels for the modeled sys-
tem. Topics covered include Markovian state lumping, analysis of sojourns on subsets
of states of Markov chains, analysis of most dependability metrics, fundamentals of
performability analysis, and bounding and simulation techniques designed to evaluate
dependability measures. The book is of interest to graduate students and researchers
in all areas of engineering where the concepts of life-time, repair duration, availability,
reliability, and risk are important.

Gerardo Rubino is a Senior Researcher at INRIA, France. His main research interests
are in the quantitative analysis of computer and communication systems through the use
of stochastic models and different analysis techniques.

Bruno Sericola is a Senior Researcher at INRIA, France. His main research activities
are in computer and communication systems performance evaluation, dependability and
performability analysis of fault-tolerant systems, and applied stochastic processes.
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1.1

Introduction

Preliminary words

From the theoretical point of view, Markov chains are a fundamental class of stochastic
processes. They are the most widely used tools for solving problems in a large number
of domains. They allow the modeling of all kinds of systems and their analysis allows
many aspects of those systems to be quantified. We find them in many subareas of opera-
tions research, engineering, computer science, networking, physics, chemistry, biology,
economics, finance, and social sciences. The success of Markov chains is essentially due
to the simplicity of their use, to the large set of theoretical associated results available,
that is, the high degree of understanding of the dynamics of these stochastic processes,
and to the power of the available algorithms for the numerical evaluation of a large
number of associated metrics.

In simple terms, the Markov property means that given the present state of the pro-
cess, its past and future are independent. In other words, knowing the present state of the
stochastic process, no information about the past can be used to predict the future. This
means that the number of parameters that must be taken into account to represent the
evolution of a system modeled by such a process can be reduced considerably. Actually,
many random systems can be represented by a Markov chain, and certainly most of the
ones used in practice. The price to pay for imposing the Markov property on a random
system consists of cleverly defining the present of the system or equivalently its state
space. This can be done by adding a sufficient amount of information about the past of
the system into the definition of the states. The theory of Markov models is extremely
rich, and it is completed by a large set of numerical procedures that allow the analysis
in practice of all sorts of associated problems.

Markov chains are at the heart of the tools used to analyze many types of systems
from the point of view of their dependability, that is, of their ability to behave as speci-
fied when they were built, when faced with the failure of their components. The reason
why a system will not behave as specified can be, for instance, some fault in its design,
or the failure of some of its components when faced with unpredicted changes in the sys-
tem’s environment [3]. The area where this type of phenomenon is analyzed is globally
called dependability. The two main associated keywords are failures and repairs. Fail-
ure is the transition from a state where the system behaves as specified to a state where
this is not true anymore. Repair is the name of the opposite transition. Markov chains
play a central role in the quantitative analysis of the behavior of a system that faces
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failure occurrences and possibly the repair of failed components, or at least of part of
them. This book develops a selected set of topics where different aspects of these math-
ematical objects are analyzed, having in mind mainly applications in the dependability
analysis of multicomponent systems.

In this chapter, we first introduce some important dependability metrics, which also
allow us to illustrate in simple terms some of the concepts that are used later. At the
same time, small examples serve not only to present basic dependability concepts but
also some of the Markovian topics that we consider in this book. Then, we highlight the
central pattern that can be traced throughout the book, the fact that in almost all chapters,
some aspect of the behavior of the chains in subsets of their state spaces is considered,
from many different viewpoints. We finish this Introduction with a description of the
different chapters that compose the book, while commenting on their relationships.

Dependability and performability models

In this section we introduce the main dependability metrics and their extensions to the
concept of performability. At the same time, we use small Markov models that allow us
to illustrate the type of problems this book is concerned with. This section also serves
as an elementary refresher or training in Markov analysis techniques.

Basic dependability metrics

Let us start with a single-component system, that is, a system for which the analyst has
no structural data, and let us assume that the system can not be repaired. At time 0, the
system works, and at some random time 7', the system’s lifetime, a failure occurs and
the system becomes forever failed. We obviously assume that 7 is finite and that it has
a finite mean. The two most basic metrics defined in this context are the Mean Time
To Failure, MTTF, which is the expectation of 7, MTTF = E{T}, and the reliability at
time t, R(t), defined by
R(t)=P(T > 1},

that is, the tail of the distribution of the random variable, 7. Observe that we have
o0
E{T} =MTTF =/ R(1)dt.
0

The simplest case from our Markovian point of view is when 7" is an exponentially
distributed random variable with rate A. We then have MTTF = 1/A and R(f) = ¢ .
Defining a stochastic process X = {X;, t € R} on the state space S = {1,0} as X, = |
when the system is working at time 7, 0 otherwise, X is a continuous-time Markov chain
whose dynamics is represented in Figure 1.1.

Let us assume now that the system (always seen as made of a single component) can
be repaired. After a repair, it becomes operational again as it was at time 0. This behavior
then cycles forever, alternating periods where the system works (called operational or
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A

A single component with failure rate A and X, = 1

up periods) and those where it is being repaired and thus does not provide any useful
work (called nonoperational or down periods). Thus, after a first failure at some time
F,, the system becomes nonoperational until it is repaired at some time R; > F), then
it works until the occurrence of a second failure at some time F, > R, etc. Let us call
U| = F the length of the first up period, D\ = R, — F| the length of the first down period,
Uy = Fy — R the length of the second up period, etc. Let us consider now the main case
for this framework, which occurs when the two sequences (U;);=1 and (D;);- are both
i.i.d. and independent of each other (this is called an alternating renewal process in
some contexts).

In this model, there is an infinite number of failures and repairs. By definition, the
MTTEF is the mean time until the first system’s failure:

MTTF =E{U, },

and
R(t) =P{U, > t}.

We may now consider other relevant metrics. First, the Mean Time To Repair, MTTR,
is given by
MTTR = E{D,},

and the Mean Time Between Failures, MTBF, is given by MTBF = MTTF + MTTR. The
reliability at time ¢ measures the continuity of the service associated with the system,
but one may also need to know if the system will be operational at time t. We define the
point availability at time t, PAV(t), as the probability that the system will be working
att.

Assume now that the U; are exponentially distributed with rate A and that the D; are
also exponentially distributed with rate ;. We then have MTTF = [ /A, MTTR = 1/p,
and R(t) = e ™. If we define a stochastic process X = {X;, t € R"} such that X; = 1
if the system works at time ¢, and X; = 0 otherwise, X is the continuous-time Markov
chain whose associated graph is depicted in Figure 1.2. Let us denote p;(¢) = P{X; = i},
i=1,0. In other words, (p,(2), po(?)) is the distribution of the random variable X;, seen as
arow vector (a convention that is followed throughout the book). Solving the Chapman—
Kolmogorov differential equations in the p;(¢) and adding the initial condition X = 1,
we get

M A —(Atpu)t
PAV()=P{X,=1}=pi() = ——+ ——e¢ X
O =PX,=1}=p:1(0) P

This example allows us to introduce the widely used asymptotic availability of the sys-
tem, which we denote here by PAV(c0), defined as PAV(oco) = lim,_, o, PAV(?). Taking
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H

A single component with failure rate A and repair rate p; Xo = |

the limit in p(7), we get PAV(00) = i/ (A+w). Of course, if w = (7}, mp) is the stationary
distribution of X, we have PAV(occ) = my. The stationary distribution, 7, can be com-
puted by solving the linear system of equilibrium equations of the chain: m 1A = mopu,
T +my=1.

More complex metrics

Let us now illustrate the fact that things can become more complex when dealing with
more sophisticated metrics. Suppose we are interested in the behavior of the system in
the interval [0,¢], and that we want to focus on how much time the system works in that
interval. This is captured by the interval availability on the interval [0,t], IA(t), defined
by the fraction of that interval during which the system works. Formally,

1 13
IA(t) = —/ 1 (x,=1)ds.
t Jo

Observe that IA(t) is itself a random variable. We can be interested just in its mean, the
expected interval availability on [0,¢]. In the case of the previous two-state example, it
is given by

1 [ " A
E{IA(D)} = — [ PAV(s)ds = | — e~ OHmr)
{IA(D)) t/ﬂ (s)ds k+“+(k+#)21( e )

If, at the other extreme, we want to evaluate the distribution of this random variable,
things become more complex. First, see that P{/A(f) = 1} = ¢ *, that is, there is a mass
at t = 1. Then, for instance in [5], building upon previous work by Takaks, it is proved
thatif x < 1,

(1—x) y
P{IA(t) <x}=1—e*" (l -+ \/)L,u.xt/ eﬁ l|(2\/)tuxly)dy) , (1.1)
0

where /) is the modified Bessel function of the first kind defined, for z > 0, by
zZ\ %+l 1
o= (A L
el ; 2) A+

In the well-known book by Gnedenko et al. [39], the following expression is proposed:

00

— n k
P{IA(1) < x} = Zue‘“"“"g‘%ﬁkzle-“'%. (1.2)
n =n+
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2\ A

Two identical components in parallel with failure rate A and no repair; X, =2

Actually, there is an error in [39] on the starting index value of the embedded sum. The
expression given here is the correct one.

In the book [85] by S. Ross, using the uniformization method (see Chapter 3 of this
book if you are not familiar with this technique), the following expression is derived:

n

PUA(t) < x} = Ze—”'(in")iz (kf ])p"—”'q“—' 3 (’;);c‘(l —0r o (13)
' i=k

n>1 k=1

where p = A/(A+ ) =1 —g and v = A+ w. In Chapter 6 this approach is followed
for the analysis of the interval availability metric in the general case. This discussion
illustrates that even for elementary stochastic models (here, a simple two-state Markov
chain), the evaluation of a dependability metric can involve some effort.

The previous model is irreducible. Let us look at simple systems modeled by absorb-
ing chains. Consider a computer system composed of two identical processors working
in parallel. Assume that the behavior of the processors, with respect to failures, is
independent of each other, and that the lifetime of each processor is exponentially dis-
tributed, with rate .. When one of the processors fails, the system continues to work
with only one unit. When this unit fails, the system is dead, that is, failed forever. If X,
is the number of processors working at time 7, then X = {X;, t € R*} is a continuous-time
Markov chain on the state space S = {2, 1,0}, with the dynamics shown in Figure 1.3.
The system is considered operational at time ¢ if X; > 1.

There is no repair here. The MTTF of the system, the mean time to go from the initial
state 2 to state 0, is the sum of the mean time spent in state 2 plus the mean time spent
in state 1, that is,

1 1 3

MTTF= —+ — = —.
20 A 2A

To evaluate the reliability at time ¢, which is given by

R(t) =P{U, > 1} =P{X, > 1],

we need the transient distribution of the model, the distribution p(¢) of the random
variable X, that is, the row vector

p@) = (p2(0), p1(1), po(D)).

After solving the Chapman—Kolmogorov differential equations satisfied by vector p(7),
we have

pO=e?, p(=2"1—-e), por)=1-2¢""+e .
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24 A

u

Two identical components in parallel, each with failure rate A; a working component can repair a
failed one, with repair rate j¢; if both components are failed, the system is dead; Xy = 2

‘We obtain
R(t)=pa() +pr() =1 — po(t) =2 M — ™2,

Observe that in this particular case, there is another elementary method to obtain the
reliability function. Since the lifetime 7' of the system is the sum of two independent
and exponentially distributed random variables (the sojourn times of X in states 2 and 1),
the convolution of the two density functions of these sojourn times gives the density
function of T Integrating the latter, we obtain the cumulative distribution function of 7:

3 A
P{(T<t)=1—R(t)= / / 2xe M e 2N dx ds.
0 Jo

Now, suppose that when a processor fails, the remaining operational one can repair the
failed unit, while doing its normal work at the same time. The repair takes a random
amount of time, exponentially distributed with rate w, and it is independent of the pro-
cessors’ lifetimes. If, while repairing the failed unit, the working one fails, then the
system is dead since there is no operational unit able to perform a repair. With the same
definition of X;, we obtain the continuous-time Markov chain depicted in Figure 1.4.

The best way to evaluate the MTTF = [E{T} is to define the conditional expectations,
x;i =E{T | Xo =i} for i =2, 1, and write the equations

1 1

X2=ﬁ+xl, x|=m+)‘+u«fz,
leading to
3 +pu
MTTF=x; = ———.
=0

For the reliability at time ¢, we must again solve for the distribution p(r) of X;. We obtain

()= A—pu+Ge M —A—pu—G)e
p2 - 2G 3

—axl __ e—all

=
G

where

G = /224 6Au+ u?,
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and
AN+ u+G A+ u—G
GG =—>ap=——>0.
2 2
This leads to
aje 2 — gpe '
R(O)=P{U; > t} =P{X; > 1} = p2() +p1(1) = G

Let us include here a brief introduction to the concept of quasi-stationary distribution,
used in Chapter 4. When the model is absorbing, as in the last example, the limiting
distribution is useless: at oo, the process will be in its absorbing state (with probabil-
ity 1), meaning that p(r) — (0,0, 1) as ¢t = oco. But we can wonder if the conditional
distribution of X, knowing that the process is not absorbed at time ¢ has a limit. When it
exists, this limit is called the quasi-stationary distribution of process X. In the example,
we have

‘ , pa(t) G-dtp G-%-—p

lim P(X, =2|X, #0} = 1 = _ ,

ALK =2 O = i Ot m® MrpiG .
and

. . pi() 4x I+pu—G

lim P{X, =1|X, #0} = lim = = ;

P =1 A O = O+ p® - BtptG . 2%

When the system is not repairable, the point availability and the reliability functions
coincide (PAV(f) = R(¢) for all r). At the beginning of this chapter we used the ele-
mentary model given in Figure 1.2 where the system could be repaired, and thus
PAV(!) # R(2).

To conclude this section, let us consider the example given in Figure 1.5, and
described in the figure’s caption. Observe that the topology of the model (its Markovian
graph) is the same as in the model of Figure 1.4 but the transition rates and the
interpretation are different.

First of all, we have MTTF = 1/A. The mean time until the system is dead, the mean
absorption time of the Markov chain, can be computed as follows. If W is the absorption
time, and if we denote w; =E{W | Wy =i}, i = 1,0, we have

|

1
wy = — + wo, wpy = — + cwy,
A M

A single component with failure rate A; there is a repair facility with repair rate j; when being
repaired, the system does not work; the repair can fail, and this happens with probability 1 — ¢;
the repair is successful with probability ¢, called the coverage factor, usually close to 1; if the

repair fails, the system is dead; if the repair is successful, the system restarts as new
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leading to

1 1 1
]E{W}:'w] = 1 —c (I+;) .

The system can be repaired. This leads to R(f) = e ™ and PAV(f) = p;(f). Solving the
differential equations p| (£) = —Ap1(#)+ uepo(t), po(t) = —ppo(t) +Ap1 (1) with py (0) =1,
po(0) =0, we obtain

PAV(I) — w ;al e—-a|t+ 02; I’Le;azl,

where H = /(A — )2 +4(1 — A, a; = A+ — H)/2 and ap = (A + p + H) /2.

We are also interested in the total time, TO, during which the system is operational.
Let us first compute its mean. Observing that the number of visits that the chain makes
to state 1 (that is, the number of operational periods) is geometric, we have

i
E{TO} = Z;;(l —o)e ! = T

The distribution of 70 is easy to derive using Laplace transforms. If 70 denotes the
Laplace transform of 70, we have

=S L " o R (1—0c)A
TO(S)_nz:T(A—i—s) (I=c) T (l=coA+s’

that is, 7O has the exponential distribution with rate (1 — c)A.

Performability

Consider the model of Figure 1.4 and assume that when the system works with only
one processor, it generates r $ per unit of time, while when there are two processors
operational, the reward per unit of time is equal to ar, with 1 < o < 2. The reward is
not equal to 2r because there is some capacity cost (some overhead) in being able to
work with two parallel units at the same time. We can now look at the amount of money
produced by the system until the end, T, of its lifetime. Let us call it R, and name it
the accumulated reward until absorption. Looking for the expectation of R is easy. As
for the evaluation of the MTTF, we use the conditional expectations, y; = E{R | Xo = i},
i =2, 1, which must satisfy

__(Xf' + o r + |7
Y2—2A Y, y'—k—i—u A+uy2'
This leads to - Gt 12)
+ [
E{R}:yzer.

This is an example of a performability metric: instead of looking at the system as either
working or not, we now distinguish between two different levels when it works, since it
does not produce the same reward when it works with two units or with only one.



