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Preface

While such subjects as number theory and probability theory are commonly offered
to undergraduates, it seems that Fourier analysis is rarely found, which is shocking
when one considers the value of this subject not just within mathematics but also
in the physical sciences and engineering. The author hopes that this book will
encourage the view that Fourier analysis can be fruitfully presented not just to
undergraduates, but even to younger undergraduates with no more experience than
three or four terms of calculus. Such students will find a gentle introduction to the
art of writing proofs and will be better prepared for advanced calculus and complex
variables.

A student who has taken a course in advanced calculus may wonder what can be
done with that machinery. The answer is: harmonic analysis (among other things).
Paul Halmos is reported to have said words to the effect that the tragedy of Fourier
series is that they were invented (in 1807) before convergence. The wonderful
thing is that analysts such as Cauchy, Dirichlet, Riemann, and Weierstrass were
motivated to develop the foundations of real analysis in order to make sense of
Fourier series. In particular, Riemann defined his integral in order to provide a
more rigorous basis for the discussion of Fourier series.

This book could be used for a capstone course of an undergraduate program
or for beginning graduate students as a way to motivate the study of the Lebesgue
integral. Since it is hoped that this book will be useful at a wide range of levels, it
contains far more material than would ever be used in a single one term course. The
author will be happy to provide suggestions adjusted to the instuctor’s purpose.

We study Fourier analysis in three important settings. First we consider the
Discrete Fourier Transform, which has to do with the use of roots of unity to de-
scribe periodic sequences. The results in this setting are easily obtained, and they
form a framework for our endeavors in the more difficult subsequent settings. The
point is that in the discrete setting there is no issue of convergence, but with Fourier
Series we discover that convergence is a delicate matter. With Fourier Transforms
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b'e Preface

of functions defined on the real line, matters are similar, but with additional dif-
ficulties. In the two latter situations we encounter points in our arguments where
a detail is needed from advanced calculus or Lebegue measure theory. On such
occasions, we simply quote the needed result and move on.

On the subject of Fourier Series, some authors use cos nz and sinna, so that
all functions have period 2m. The consequence of this prescription is that most
formulas have a 1/(27) or 1/7. Our contention is that the subject is more elegant
when one works with functions with period 1, so that the basic building blocks
are cos2mna and sin27rnx. But cos2mnx + isin 2rnr = €% (a fact that will
be a subject of discussion in Chapter 1), and it is more elegant still to use the
complex exponential rather than sines and cosines. Of course, to proceed in this
way, one must first become more comfortable with complex numbers. Hence that
is the topic of Chapter 1. In general, when we are faced with a function with some
strange period, we make a linear change of variable so that everything is translated
into issues of functions with period 1. If sines and cosines are involved, we may
convert to complex exponentials. When we resolve whatever is at issue, we may
convert back to sines and cosines, if we wish. This is a little reminiscent of a
problem expressed in terms of pounds and feet, which we would convert to grams
and meters, and then convert back after the calculation is done.

Fourier analysis has links to many other branches of mathematics. We occa-
sionally make remarks relating to such topics as linear algebra, probability theory,
or number theory. Such digressions may be safely ignored by readers who are
unfamiliar with the related subject in question.

Among the following chapters, sections, and appendices are found several valu-
able topics that are rarely found in the undergraduate (and sometimes even the
graduate) curriculum. These include linear recurrences (in §F.4), summability the-
ory (in §4.3), Bernoulli polynomials and Euler-Maclaurin summation (in §9.5),
uniform distribution (in §9.6), Chebyshev polynomials (in Appendix C), and in-
equalities (in Appendix I).

The author is indebted to colleagues Al Taylor and Jack Goldberg for initiating
this educational experiment and to the late Curtis Huntington for his unwavering
support. In addition, the author is happy to thank Dick Askey, John Benedetto, Ed-
ward Crane, Peter Duren, Emily Holt, Alex Iosevich, Michael Kelly, Harsh Mehta,
Kristen Moore, Michael Mossinghoff, Chris Nixon, Olivier Ramaré, Elmer Rees,
Babar Saffari, and Jeff Vaaler for their valuable contributions. It has been a plea-
sure to work with editor Sergei Gelfand and his competent and attentive support
staff at the AMS. Finally, the author thanks Michele MacFarlane, who cheerfully
accepted a double dose of domestic chores in order that the author would have more
time to write.

Hugh L. Montgomery
Ann Arbor, Michigan
August 31, 2014
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Chapter 0

Background

In the first section below, terms are defined and proofs are included. In the second
section, most terms are defined, but proofs are omitted. In the third section, not
only are proofs omitted, but some terms are undefined. The point is that everything
we do can be made fully rigorous, but neither lack of rigor nor absence of advanced
training in analysis should interfere with the acquisition of Fourier analysis in its
most classical settings.

0.1. Elementary mathematics

An arithmetic progression (sometimes abbreviated AP) is a set of the form {n¢+a:
€ Z}. Hence a sequence {u, } is said to be in arithmetic progression if u, 1 — u, is
the same for all n. That means that u,, = nq + a for some ¢ and a. We frequently
sum such numbers.

Theorem 0.1. Ifuy,us,...,un are consecutive members of an arithmetic progres-
sion, then
Uy + UuUn
(0.1) U1+U2+-'-+UN:N-T.
For example,
N(N +1
1424 N= VD,

Proof. Let d be determined so that u,4+; — u, = d for all n. We write the sum
twice, first in its natural order and then in reverse order. Thus if S is the sum, then

S=wu +us +uz A+ F+un_1+un,
S=uy+un-_1+un—2+--+uz Fu.

We now sum in columns. On the left hand side we have 2S5. In the first column on
the right we have u; +wuy. In the second column on the right we have us +un_; =
(ug + d) + (uy — d) = u; +un. In the third column we have uz + uny_o =

—
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2 0. Background

(ug +d)+ (un—1 —d) = us +un—1 = ug +un. Continuing in this way, we find that
Uk +ung1—k = uy +uy for all k. Hence the right hand side above is N (uq +upn),
so we have the result. O

A sequence {u,, } is said to be a geometric progression if u,41/u, is the same
for all n. That means that u,, = ar™ for some a and 7.

Theorem 0.2. The sum of a geometric progression is

j

(0.2) ltrai®go e _) T & (r#1),
N (r=1).

If the first term to be summed is a power of r, we can simply factor out that
amount. Thus for example,

M+N-1 PM _  M+N
Je
E : o
1—7r
n=NM

if r # 1. If [r| < 1, then vV — 0 as N — oo, so

(0.3) Y = —.

n=0

Proof. If » = 1, then each of the N terms on the left is 1, so the sum is N. Suppose
that r # 1, and let S denote the sum. Then
rS=r+r2+r34... 4V,
On subtracting this from S we see that most terms cancel, leaving
S—rS=1-—rN.

The stated formula now follows on dividing both sides by 1 — 7. O

If p(x) = az?® + bx + ¢ is a quadratic polynomial, then
4ap(z) = 4a*z* + 4abzx + 4ac = (2azx + b)? + 4ac — b,

This manipulation is called completing the square. If p(x) = 0, then (2ax + b)? = d
where d = b® — 4ac is the discriminant of the polynomial. If d > 0, then the
equation p(x) = 0 has two distinct real roots, namely

b+ Vd _—b—Vd
=—— =—
If d = 0, then p(zx) has a double root, r| = ro = —b/(2a). If d < 0, then p(x) has
no real root, but it has two complex roots,
—b+iv—d
2a )

In all three cases the sum of the roots is —b/a, the product of the roots is ¢/a, and
the polynomial factors, p(x) = a(z — ri)(x — rs).

1 o



0.2. Real analysis 3

Let aj,as....,ay and by, bs, ..., by be real numbers. Cauchy’s Inequality
asserts that
L N 12, N 1/2
(0.4) > anba| < (3a2) " (Do82) -
n=1 n=1 =

That this is so follows immediately from the algebraic identity
N N N 2 1NN
(Z a%)( brzt) - (Z anbn) = 2 Z Z(ambn - anbm)?
n=1 n=1 n=1 m=1n=1
since a sum of squares of real numbers is nonnegative. Moreover, from the above
identity it is clear that equality holds in (0.4) if and only if the two sequences {a,, },
{b,} are proportional.

The Principle of Mathematical Induction is one of the axioms that define the
integers. It can be formulated in a number of (equivalent) ways.

(1) Weak induction: If S is a set of positive integers, if 1 € S, and if n+1 € S
whenever n € S, then S is the set of all positive integers.

(2) Strong induction: If S is a set of positive integers, if 1 € S, and if £ € S for
all positive integers k < n implies that n € S, then S is the set of all positive
integers.

(3) Well ordering: 1If S is a set of positive integers, and S is non-empty, then S
contains a least member.

In all three cases we are inducting from 1, but of course one could instead induct
from 0 or any other convenient point.

The Binomial Theorem is treated in Appendix B. A catalogue of trigonometric
formulae is provided in Appendix T, for convenience. The manner in which we
express cosnf as a polynomial in cosf is the subject of Appendix C.

0.2. Real analysis

It is not our purpose to summarize all of real analysis. We mention only specific
items that we need, and these are largely concerned with such issues as conditions
that ensure that (a) one can exchange two limiting operations; and (b) a sequence
that appears to tend to a limit does so.

Theorem 0.3. A bounded monotonic sequence of real numbers has a limit.

A sequence {x,} is said to be a Cauchy sequenceif

(0.5) lim (zm —x,) =0.
e

Clearly any sequence that tends to a finite limit is a Cauchy sequence. What
is important is that the converse is also true:

Theorem 0.4. If {x,} is a Cauchy sequence, then lim, . z, erists and is finite.



4 0. Background

Note that a sequence of rational numbers tending to v/2 is a Cauchy sequence,
but does not not have a limit within the system of rational numbers, because V2
is irrational. In a set-theoretic sense, the real numbers are constructed by filling in
the holes found among the rational numbers. Because all Cauchy sequences have a
limit, we say that the real numbers are complete.

A function f is continuous at a if lim,_,, f(z) = f(a). That is, for every € > 0
there is a § > 0 such that |f(z) — f(a)| < € if | — a|] < . Here the choice of §
depends on both £ and a. However, if in a domain D we have |f(z) — f(y)| < €
whenever z € D, y € D and |z —y| < J, then we say that f is uniformly continuous

on D.

Theorem 0.5. If a real-valued function f(x) is continuous on a closed bounded
interval [a,b], then it is uniformly continuous on that interval, and attains its maz-
imum and minimum values.

The same theorem also holds for real-valued continuous functions defined on
closed bounded sets in the plane R2.

Theorem 0.6. (The Squeeze Theorem) Suppose thatd > 0, that f_, f, and f are
functions such that f—(z) < f(z) < fr(x) fora—d <z < a+d. Iflim, . f_(x) =c
and limy_s, fi(z) = ¢, then lim, s, f(z) = c.

Theorem 0.7. (Rolle’s Theorem) If f(z) is a continuous real-valued function on
the interval a < x < b with f(z) differentiable for a < © < b, and if f(a) = f(b),
then there exists a £ € (a,b) such that f'(§) = 0.

Theorem 0.8. (The Mean Value Theorem of Differential Calculus) If f(z) is a
continuous real-valued function on the interval a < x < b and f(x) is differentiable
for a < x < b, then there exists a & € (a,b) such that

rio= 10t

Theorem 0.9. If > | |a,| < oo, then the sum Y >~ | a, converges.

Theorem 0.10. Suppose that ap,y, > 0 for all m and n. We form two sums:

(0.6) mi (°° ). i (i mn)-

If either of these sums is finite, then the other one is also finite, and they are equal.

Theorem 0.11. If |amn| < Ay for all m and n, and if

> (3 Am) <

m=1 n=1

then the sums (0.6) converge and are equal.

Theorem 0.12. Let f(z) = > po,arz® be a power series, and let R be defined by
the relation ]
= = li:?_;solip |an|1/” .



0.2. Real analysis 5

Then the power series is convergent for |z| < R, and is divergent for |z| > R. For
|z| < R a power series may be differentiated term-by-term, and the differentiated
power series has the same radius of convergence R.

To define what it means to say that a function is Riemann-integrable on an
interval [a, b], we start with a partition 7r, which is to say a sequence {z,} such
that

a=zrg< a1 < -<xy;=h,
and choose interspersing numbers &; so that

(0.7) 0= < 1 << <<€y <ay1 <& <zy=0

A Riemann sum for f: f(x)dz is then a sum of the form

M“

ﬂ'£= f '—Ij_l).

J=i
The mesh of 7 is defined to be

(0.8) mesh(7w) = éljagx.)(xj —Tj_1).

That is, the mesh is the length of the longest subinterval defined by w. We say that
the integral exists and has the value I if for every ¢ > 0 there is a § > 0 such that
if mesh(7r) < d, then |S(m, &) — I| < & for any choice of the interspersing points &.

As to sums and integrals such as

Z U, and /f(:z:

a<n<b

we have two different conventions. In a sum, we sum over all n that satisfy the
indicated constraints. Thus if b < a, then there is no such n, and the value of
the sum is 0. However for integrals, if b < a, we simply say that the value of the
integral is — [ f(z)dx.

The arc length of a parameterized curve (x(t),y(t)) for a < < b is the supre-
mum of all sums of the form

J
(0.9) D=/ (alty) = 2(t-))? + (lty) = y(ti-1))?

wherea=tg <t <---<ty=b

Theorem 0.13. (Fundamental Theorem of Calculus, First Form) Suppose that
f(z) is Riemann-integrable on the interval [a,b]. For a <z < b, put

F(z) = /If(u)du.

Then F(x) is continuous on the interval [a,b]. Ifa < ¢ < b and if f(x) is continuous
at x = c, then F(x) is differentiable at x = ¢, and F'(c) = f(c).
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Theorem 0.14. (Fundamental Theorem of Calculus, Second Form) Suppose that
f(x) is Riemann-integrable on the interval [a,b]. Suppose further that F(z) is a
differentiable function on the interval [a,b] such that F'(x) = f(x) fora < x < b.

Then
b
/ f(z)dz = F(b) — F(a).

The Second Form of the Fundamental Theorem follows from the First Form if
f is continuous. The point of the Second Form is that it holds under the weaker
assumption that f is Riemann-integrable.

Theorem 0.15. (Integration by parts) Suppose that f is Riemann-integrable on
[a,b], that F is a function such that F'(x) = f(x), and that g is a differentiable
function such that g'(x) is Riemann-integrable on [a,b]. Then

b
[ f@g(z) de = Fpg(t) - Fl@)g(a ] F(2)d(z)da.
This follows immediately from the Second Form of the Fundamental Theorem,
in view of the differentiation formula (Fg)' = F'g+ Fg' = fg+ Fy¢'.

Theorem 0.16. (The triangle inequality for integrals) If f is Riemann-integrable,
then

z) d:z;‘ < /: \f(@)| d.

Theorem 0.17. (Leibniz’s Rule) If f(x,y) and (%f(x,y) ezist and are continuous
on the closed rectangle a < x < b, ¢ < y < d, then the function

d
= / flz,9)dy

s differentiable for a < x <b, and
‘0
) — ;
F'(x) —/C 50 (@) dy.

Theorem 0.18. Suppose that f(z) =Y .~ fu(x). If the functions f, are differen-
tiable, and if the series S .., fi(x) is uniformly convergent, then f is differentiable,
and

Theorem 0.19. (Dominated Convergence) If a,,. is a double sequence, and A,
ts such that lim,, oc Qmn = A, exists, and if there is a sequence M,, such that
|@mn| < My, for allm, and Y7 | M,, < oo, then

9 STHES 3V
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