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Introduction

This book was planned originally not as a work to be published, but as an excuse
to buy a computer, incidentally to give me a chance to organize my own ideas on
what measure theory every would-be analyst should learn, and to detail my
approach to the subject. When it turmed out that Springer-Verlag thought that the
point of view in the book had general interest and offered to publish it, I was
forced to try to write more clearly and search for errors. The search was
productive.

Readers will observe the stress on the following points.

The application of pseudometric spaces. Pseudometric, rather than metric
spaces, are applied to obviate the artificial replacement of functions by
equivalence classes, a replacement that makes the use of “almost everywhere”
either improper or artificial. The words *“function” and “the set on which a
function has values at least €” can be taken literally in this book. Pseudometric
space properties are applied in many contexts. For example, outer measures are
used to pseudometrize classes of sets and the extension of a finite measure from
an algebra to a ¢ algebra is thereby reduced to finding the closure of a subset of
a pseudometric space.

Probability concepts are introduced in their appropriate place, not con-
signed to a ghetto. Mathematical probability is an important part of measure
theory, and every student of measure theory should be acquainted with the
fundamental concepts and function relations specific to this part. Moreover,
probability offers a wide range of measure theoretic examples and applications
both in and outside pure mathematics. At an elementary level, probability-in-
spired examples free students from the delusions that product measures are the
only important multidimensional measures and that continuous distributions are
the only important distributions. At a more sophisticated level, it is absurd that
analysts should be familiar with mutual orthogonality but not with mutual in-
dependence of functions, that they should be familiar with theorems on con-
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vergence of series of orthogonal functions but not on convergence of
martingales.

Convergence of sequences of measures is treated both in the general Vitali-
Hahn-Saks setting and in the mathematical setting of Borel measures on the
metric spaces of classical analysis: the compact metric spaces and the locally
compact separable metric spaces. The general discussion is applied in detail to
finite Lebesgue-Stieltjes measures on the line, in particular to probability

measures.
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0

Conventions and Notation

1. Notation: Euclidean space

R" denotes Euclidean N~space; R = R'; R" is the half line [0,.); R" is the
extended half-line [0,4+c<]; R is the extended line [-o0,4+0c]. The extended half-
lines and lines can be metrized by giving them the metric of their images under
the transformation s' = arctan s.

2. Operations involving teo

a(too) =too if a>0,
=0 if a=0,
=Foee if a<O.

If a is finite, atoo = oo} if a =+o0, a+(+00) = +o0; if @ = —o0, @+(—00) = —oo.

3. Inequalities and inclusions

“Positive” means “2 0”; “strictly positive” means “> 0.” The symbols c and >
allow equality. "Monotone™ allows equality unless modified by “strictly.” Thus
the identically O function on R is both monotone increasing and decreasing, but
is not strictly monotone in either direction.

4. A space and its subsets

If § is a space, the class of all its subsets is denoted by 2°. The complement of a
subset A of a space is denoted by A. If A and B are subsets of S, AnB is some-
times denoted by B-~A. The indicator function of a subset A of § , defined on S as
1 on A and O on A, is denoted by 1,. In particular, the identically 1 function I
will be denoted by 1 and the identically O function 15 by 0.
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5. Notation: generation of classes of sets

If A is a class of subsets of a space, the classes Ag, A and A are, respectively,
the classes of countable unions, countable intersections, and complements of the

sets in A,

6. Product sets

If §y.....5; are sets, $;x-X5,, is the product set
{(S15e00%1): 55 € S5, (f S )}
If A; is aclass of subsets of §;, A|>xx A, is the class
[Ax—xXAp:Aje A; (i $n))

of product sets. The corresponding definitions are made for infinite (not
necessarily countable) products.

7. Dot notation for an index set

“B.” is shorthand for {B;, i € I}, where / is a specified not necessarily countable
index set. Unless the subscript range is otherwise described, *“a finite sequence
B.” means the sequence B,,...,By,, for some strictly positive integer n, and “a
sequence B." means the infinite sequence B),B,,... . The notation ZB. means the
sum cver the values of the subscript, and corresponding dot notation will be
applied to (not necessarily countable) set unions and intersections. If a. is a
sequence, the notation lim a. means lim,_,., a,, and corresponding dot notation
will be applied to inferior and superior limits. When dots appear more than once
in an expression, the missing symbol is to be the same in each place. Thus if A,
and B. are sequences of sets, U(A.NB.) is the union of intersections A,NBy,.

8. Notation: sets defined by conditions on functions

If fis a function from a space S into a space S’ and if A' is a subset of §", the set
notation {s € S: f{s) € A'} will sometimes be abbreviated to {f € A’}. Here f may
represent a set of functions. Thus if g;,....g, are functions from S into §' and if
B' is a subset of $'7?, the notation {s € S: [g,(5).....8n(5)] € B') may be
abbreviated to {(g),....g,) € A'}.
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9. Notation: open and closed sets

The classes of open and closed subsets of a topological space will be denoted,
respectively, by G and F.

10. Limit of a function at a point

The limit of a function at a point depends somewhat on the nationality and back-
ground of the writer. In this book, the limit does not involve the value of the
function at the point. Thus the function 1g}, defined on R as 0 except at the
origin, where the function is defined as 1, has limit O at the origin in this book
even though the function does not have a Bourbaki limit at the origin.

11. Metric spaces

Recall that a metric space is a space coupled with a metric. A metric for a space
S is a distance function d, a function from SxS into R* satisfying the following
conditions.

(a) Symmetry: d(s,t) = d(t,s).
(b) Identity: d(s,’) =0 if and only if s = 1.
(c) Triangle inequality: d(s,u) < d(s,1) + d(t,u).

A ballin § is an open set {s: d(s,5p) < r}; 5g is the center, r is the radius.
It is a useful fact that if d is a metric for S and if ¢ is a strictly positive constant,
the function dac is also a metric for S and determines the same topology as d.
That is, the class of open sets is the same for dac as for d. If d is a function from
SxS into R* and satisfies (a), (b), and (c), the function dAc is a finite valued
function satisfying these conditions and can therefore serve as a metric.

12. Standard metric space theorems

The following standard metric space theorems will be used. Proofs are sketched
to facilitate checking by the reader that they are valid for the pseudometric
spaces to be defined in Section 13.

(a) A metric space (S,d) can be completed, that is, can be augmented by
addition of new points to be complete. To prove this theorem, let S’ be the class
of Cauchy sequences of points of S. The space S’ is partitioned into equivalence
classes, putting two Cauchy sequences s. and . into the same equivalence class
if and only if lim d(s.,s) = 0. If s’ and ' are equivalence classes, define d'(s’,1") =
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lim d(s.,t.) = 0. If 5* and ¢’ are equivalence classes, define d'(s',t) = lim d(s.,%) for
s. in 5" and . in ¢. This limit exists, does not depend on the choice of Cauchy
sequences in their equivalence classes, and (S'.d) is a complete metric space.
Define a function f from S into S* by f(s) = s,5.s.... . This map preserves distance,
and if S is identified with its image in S, ' is the desired completion of S.

(b) A uniformly continuous function g from a dense subset of a metric space S
into a complete metric space S' has a unique uniformly continuous extension to S.
To prove this theorem, observe that if s is not already in the domain of g, and if s.
is a sequence in the domain of g, with limit s, the uniform continuity of g implies
that lim g(s.) exists and does not depend on the choice of s.. The value g(s) is
defined as this limit, and as so extended g is uniformly continuous on S. The
uniqueness assertion is trivial.

(c) If a complete metric space S is a countable union of closed sets, at least
one summand has an inner point. To prove this theorem, let US. be the union of a
sequence of closed nowhere dense subsets of S. There is a closed ball B, of radius
<1 in the open set S,. Similarly there is a closed ball B, of radius < 1/2 in B;n 52.
and so on. The intersection of these closed balls is a point of S in no summand.
Hence the union cannot be S, that is, if S is the upion of a sequence of closed sets,
at least one is not nowhere dense, and therefore has an inner point.

(d) If . is a sequence of bounded continuous functions from a complete metric
space S into R, and if sup If.(s)| < +oe for each point s of S, then there is a number
Y for which the set (s € S: sup Ifs(s)| < Y}has an inner point. This theorem follows
at once from (c) because for each value of ¥ the set in question is closed, and as ¥
increases through the positive integers the set tends to §.

(e) A sequence f. of functions from a metric space (§,d) into a metric space
(§'.d" is said to converge uniformly at a point sy of S, if there is convergence at s,
and if to every strictly positive € there corresponds a strictly positive 8 and an
integer k, with the property that d'(f,,,(s).f,,(s)) < ¢ whenevern 2 k, m 2k, and
d(s,s¢) < 6. An equivalent condition is that there is a point s’ of S’ with the
property that whenever . is a sequence in S, with limit s, then lim fo(te) = s'. Iffo
'is @ convergent sequence of continuous functions from S into S', the limit function
f is continuous at every point of uniform convergence of the sequence. In fact, if
5o is a point of uniform convergence, if €, 8, k are as just described, and if § is
decreased, if necessary, to make d'(f,,(s),ﬁ‘(so)) < € whenever d(s,sp) < 8, then

(12.1) d(fs)fiso)) < d(Fs)fuls) W' (fis)filso)) +d'(filsonfiso) < 3€

whenever d(s,5) < 8. Hence f is continuous at sg, as asserted.

(f) If a sequence f. of continuous functions from a complete metric space (S,d)
into a metric space (S'.d") is convergent, there must be at least one point of
uniform convergence. (Since this assertion can be applied to the restrictions of the
functions to an arbitrary closed ball in S, the set of points of uniform continuity of
the sequence, and therefore the set of continuity points of the limit function, is
actually dense in S.) This assertion is reduced to (c) as follows. For each pair of
strictly positive integers m, &, the set



